Project description:Inferring neural mechanisms from functional magnetic resonance imaging (fMRI) is challenging because the fMRI signal integrates over millions of neurons. One approach is to compare computational models that map neural activity to fMRI responses, to see which best predicts fMRI data. We use this approach to compare four possible neural mechanisms of fMRI adaptation to repeated stimuli (scaling, sharpening, repulsive shifting and attractive shifting), acting across three domains (global, local and remote). Six features of fMRI repetition effects are identified, both univariate and multivariate, from two independent fMRI experiments. After searching over parameter values, only the local scaling model can simultaneously fit all data features from both experiments. Thus fMRI stimulus repetition effects are best captured by down-scaling neuronal tuning curves in proportion to the difference between the stimulus and neuronal preference. These results emphasise the importance of formal modelling for bridging neuronal and fMRI levels of investigation.
Project description:We investigated the neural basis of repetition priming (RP) during mathematical cognition. Previous studies of RP have focused on repetition suppression as the basis of behavioral facilitation, primarily using word and object identification and classification tasks. More recently, researchers have suggested associative stimulus-response learning as an alternate model for behavioral facilitation. We examined the neural basis of RP during mathematical problem solving in the context of these two models of learning. Brain imaging and behavioral data were acquired from 39 adults during novel and repeated presentation of three-operand mathematical equations. Despite wide-spread decreases in activation during repeat, compared with novel trials, there was no direct relation between behavioral facilitation and the degree of repetition suppression in any brain region. Rather, RT improvements were directly correlated with repetition enhancement in the hippocampus and the posteromedial cortex [posterior cingulate cortex, precuneus, and retrosplenial cortex; Brodmann's areas (BAs) 23, 7, and 30, respectively], regions known to support memory formation and retrieval, and in the SMA (BA 6) and the dorsal midcingulate ("motor cingulate") cortex (BA 24d), regions known to be important for motor learning. Furthermore, improvements in RT were also correlated with increased functional connectivity of the hippocampus with both the SMA and the dorsal midcingulate cortex. Our findings provide novel support for the hypothesis that repetition enhancement and associated stimulus-response learning may facilitate behavioral performance during problem solving.
Project description:Several fMRI and EEG/MEG studies show that repetition suppression (RS) effects are stronger when a stimulus repetition is expected compared to when a stimulus repetition is less expected. To date, the prevalent way to assess the influence of expectations on RS is via immediate stimulus repetition designs, that is, no intervening stimuli appear between the initial and repeated presentation of a stimulus. Since there is evidence that repetition lag may alter RS effects in a qualitative manner, the current study investigated how perceptual expectations modify RS effects on object stimuli when repetition lag is relatively long. Region of interest analyses in the left occipital cortex revealed a similar activation pattern as identified in previous studies on immediate lag: RS effects were strongest when repetitions were expected compared to decreased RS effects when repetitions were less expected. Therefore, the current study expands previous research in two ways: First, we replicate prior studies showing that perceptual expectation effects can be observed in object-sensitive occipital areas. Second, the finding that expectation effects can be found even for several-minute lags proposes that Bayesian inference processes are a relatively robust component in visual stimulus processing.
Project description:Correctly identifying friends and foes is integral to successful group living. Here, we use repetition suppression to examine the neural circuitry underlying generalized group categorization-the process of categorizing in-group and out-group members across multiple social categories. Participants assigned to an arbitrary team (i.e., Eagles or Rattlers) underwent fMRI while categorizing political and arbitrary in-group and out-group members. We found that frontoparietal control network exhibited repetition suppression in response to "identical in-group" (Democrat-Democrat or Eagles-Eagles) and "different in-group" (Eagles-Democrat or Democrat-Eagles) trials relative to "out-group/in-group trials" (Republican-Democrat or Rattler-Eagles). Specifically, the repetition suppression contrast map included bilateral superior parietal lobule, bilateral dorsolateral prefrontal cortex (DLPFC), and bilateral middle temporal gyrus. Participants who reported an increased tendency to join and value their social groups exhibited decreased repetition suppression in bilateral DLPFC. Comparison of our whole-brain repetition suppression map with an independently identified map of frontoparietal control network revealed 34.3% overlap. Social categorization requires recognizing both a target's group membership but also the target's orientation toward one's self. Fittingly, we find that generalized social categorization engages a network that acts as a functional bridge between dorsal attentional (exogenously-oriented) and default mode (internally-oriented) networks.
Project description:Stimulus-evoked neural activity is attenuated on stimulus repetition (repetition suppression), a phenomenon that is attributed to largely automatic processes in sensory neurons. By manipulating the likelihood of stimulus repetition, we found that repetition suppression in the human brain was reduced when stimulus repetitions were improbable (and thus, unexpected). Our data suggest that repetition suppression reflects a relative reduction in top-down perceptual 'prediction error' when processing an expected, compared with an unexpected, stimulus.
Project description:Recent work provides evidence that the infant brain is able to make top-down predictions, but this has been explored only in limited contexts and domains. We build upon this evidence of predictive processing in infants using a new paradigm to examine auditory repetition suppression (RS). RS is a well-documented neural phenomenon in which repeated presentations of the same stimulus result in reduced neural activation compared to non-repeating stimuli. Many theories explain RS using bottom-up mechanisms, but recent work has posited that top-down expectation and predictive coding may bias, or even explain, RS. Here, we investigate whether RS in the infant brain is similarly sensitive to top-down mechanisms. We use fNIRS to measure infants' neural response in two experimental conditions, one in which variability in stimulus presentation is expected (occurs 75% of the time) and a control condition where variability and repetition are equally likely (50% of the time). We show that 6-month-old infants exhibit attenuated frontal lobe response to blocks of variable auditory stimuli during contexts when variability is expected as compared to the control condition. These findings suggest that young infants' neural responses are modulated by predictions gained from experience and not simply by bottom-up mechanisms.
Project description:Stimulus repetition induces attenuated brain responses. This phenomenon, termed repetition suppression (RS), is classically held to stem from bottom-up neuronal adaptation. However, recent studies suggest that RS is driven by top-down predictive mechanisms. It remains controversial whether these top-down mechanisms of RS rely on conscious strategies, or if they represent a more fundamental aspect of perception, coding for physical properties of the repeated feature. The presence of top-down effects in the absence of perceptual awareness would indicate that conscious strategies are not sufficient to explain top-down mechanisms of RS. We combined an unconscious priming paradigm with EEG recordings and tested whether RS can be modulated by the probability of encountering a repetition, even in the absence of awareness. Our results show that both behavioural priming and RS near occipital areas are modulated by repetition probability, regardless of prime awareness. This contradicts previous findings that have argued that RS modulation is a by-product of conscious strategies. In contrast, we found that the increase in theta-band power following unrepeated trials - an index of conflict detection - is modulated only by expectations during conscious primes, implicating the use of conscious strategies. Together, our results suggest that the influence of predictions on RS can be either automatic in sensory brain regions or dependent on conscious strategies.