Project description:Reproductive strategy affects population dynamics and genetic parameters that can, in turn, affect evolutionary processes during the course of biological invasion. Life-history traits associated with reproductive strategy are therefore potentially good candidates for rapid evolutionary shifts during invasions. In a series of mating trials, we examined mixed groups of four males from invasive and native populations of the harlequin ladybird Harmonia axyridis mating freely during 48 hours with one female of either type. We recorded the identity of the first male to copulate and after the 48 h-period, we examined female fecundity and share of paternity, using molecular markers. We found that invasive populations have a different profile of male and female reproductive output. Males from invasive populations are more likely to mate first and gain a higher proportion of offspring with both invasive and native females. Females from invasive populations reproduce sooner, lay more eggs, and have offspring sired by a larger number of fathers than females from native populations. We found no evidence of direct inbreeding avoidance behaviour in both invasive and native females. This study highlights the importance of investigating evolutionary changes in reproductive strategy and associated traits during biological invasions.
Project description:The reasons for the evolution and maintenance of striking visual phenotypes are as widespread as the species that display these phenotypes. While study systems such as Heliconius and Dendrobatidae have been well characterized and provide critical information about the evolution of these traits, a breadth of new study systems, in which the phenotype of interest can be easily manipulated and quantified, are essential for gaining a more general understanding of these specific evolutionary processes. One such model is the multicolored Asian lady beetle, Harmonia axyridis, which displays significant elytral spot and color polymorphism. Using transcriptome data from two life stages, adult and larva, we characterize the transcriptome, thereby laying a foundation for further analysis and identification of the genes responsible for the continual maintenance of spot variation in H. axyridis.
Project description:Glucose is vital to embryogenesis, as are glucose transporters. Glucose transporter 4 (Glut4) is one of the glucose transporters, which is involved in rapid uptake of glucose by various cells and promotes glucose homeostasis. Although energy metabolism in insect reproduction is well known, the molecular mechanism of Glut4 in insect reproduction is poorly understood. We suspect that Glut4 is involved in maintaining glucose concentrations in the ovaries and affecting vitellogenesis, which is critical for subsequent oocyte maturation and insect fertility. Harmonia axyridis (Pallas) is a model organism for genetic research and a natural enemy of insect pests. We studied the influence of the Glut4 gene on the reproduction and development of H. axyridis using RNA interference technology. Reverse transcription quantitative polymerase chain reaction analysis revealed that HaGlut4 was most highly expressed in adults. Knockdown of the HaGlut4 gene reduced the transcript levels of HaGlut4, and the weight and number of eggs produced significantly decreased. In addition, the transcript levels of vitellogenin receptor and vitellogenin in the fat bodies and the ovaries of H. axyridis decreased after the interference of Glut4, and decreased the triglyceride, fatty acid, total amino acid and adenosine triphosphate content of H. axyridis. This resulted in severe blockage of ovary development and reduction of yolk formation; there was no development of ovarioles in the developing oocytes. These changes indicate that a lack of HaGlut4 can impair ovarian development and oocyte maturation and result in decreased fecundity.