Project description:Immune checkpoint targeting immunotherapy has revolutionized the treatment of certain cancers in the recent years. Determination of the status of immune checkpoint expression in particular cancers may assist decision making. Here, we describe the development of a single-stranded aptamer-based molecular probe specifically recognizing human PD-L1. Target engaging aptamers are selected by iterative enrichment from a random ssDNA pool and the binding is characterized biochemically. Specificity and dose dependence is demonstrated in vitro in the cell culture using human kidney tumor cells (786-0), human melanoma cells (WM115 and WM266.4) and human glioblastoma LN18 cancer cells. The utility of the probe in vivo is demonstrated using two mouse tumor models, where we show that the probe exhibits excellent potential in imaging. We postulate that further development of the probe may allow universal imaging of different types of tumors depending on their PD-L1 status, which may find utility in cancer diagnosis.
Project description:The immune system has long been known to play a critical role in the body's defence against cancer, and there have been multiple attempts to harness it for therapeutic gain. Renal cancer was, historically, one of a small number of tumour types where immune manipulation had been shown to be effective. The current generation of immune checkpoint inhibitors are rapidly entering into routine clinical practice in the management of a number of tumour types, including renal cancer, where one drug, nivolumab, an anti-programmed death-1 (PD-1) monoclonal antibody (mAb), is licensed for patients who have progressed on prior systemic treatment. Ongoing trials aim to maximize the benefits that can be gained from this new class of drug by exploring optimal timing in the natural course of the disease as well as combinations with other checkpoint inhibitors and drugs from different classes.
Project description:Immune checkpoint blockade (ICB) is the foundation of current first-line therapies in patients with metastatic renal cell carcinoma (mRCC) with the potential for eliciting long-lasting remissions. With the expanding arsenal of ICB-based therapies, biomarkers of response are urgently needed to guide optimal therapeutic selection. We review the data behind ICB therapy in RCC, emerging biomarkers of response, and the evolving role of surgery in patients with mRCC.
Project description:BackgroundImmune checkpoint inhibitors (ICI) have emerged as active therapies in the management of advanced RCC. While multiple studies have shown clinical activity of ICIs in clear cell histologies, the evidence to support their use in non-clear cell (ncc) subtypes is based on smaller prospective trials and retrospective analyses.ObjectiveThe objective of this review is to summarize the clinical outcomes of ICI-based therapies in ncc-subtypes and in tumors with sarcomatoid/rhabdoid features.MethodsWe performed a systematic literature search using PubMed, Google Scholar and ASCO databases. The keywords "renal cell cancer" and "immune checkpoint inhibitors" and equivalents were used and all original publications between July 2016 and July 2021 were included.ResultsWe included a total of 14 publications, including two clinical trials and 12 case series. The most frequent histologies were papillary (up to 75-100%), unclassified (up to 34%) and chromophobe (up to 28%). ICI monotherapy showed some activity in both 1st and 2nd line with response rates up to 27%. ICI combination regimens yielded better activity than ICI monotherapy but, overall, a heterogeneous efficacy was noted across histologies. Overall, outcomes of ICIs were superior in tumors with sarcomatoid/rhabdoid features.ConclusionThe observed activity of ICI-based therapies was heterogeneous. Combination regimens, papillary subtype and sarcomatoid/rhabdoid features were associated with higher responses. These findings might help treatment decisions and require further validation.
Project description:Pancreatic ductal adenocarcinoma is a devastating disease characterized by an extreme resistance to current therapies, including immune checkpoint therapy. The limited success of immunotherapies can be attributed to a highly immunosuppressive pancreatic cancer microenvironment characterized by an extensive infiltration of immune suppressing myeloid cells. While there are several pathways through which myeloid cells contribute to immunosuppression, one important mechanism is the increased production of reactive oxygen species. Here, we evaluated the contribution of myeloperoxidase, a myeloid-lineage restricted enzyme and primary source of reactive oxygen species, to regulate immune checkpoint therapy response in preclinical pancreatic cancer models. We compared treatment outcome, immune composition and characterized myeloid cells using wild-type, myeloperoxidase-deficient, and myeloperoxidase inhibitor treated wild-type mice using established subcutaneous pancreatic cancer models. Loss of host myeloperoxidase and pharmacological inhibition of myeloperoxidase in combination with immune checkpoint therapy significantly delayed tumor growth. The tumor microenvironment and systemic immune landscape demonstrated significant decreases in myeloid cells, exhausted T cells and T regulatory cell subsets when myeloperoxidase was deficient. Loss of myeloperoxidase in isolated myeloid cell subsets from tumor-bearing mice resulted in decreased reactive oxygen species production and T cell suppression. These data suggest that myeloperoxidase contributes to an immunosuppressive microenvironment and immune checkpoint therapy resistance where myeloperoxidase inhibitors have the potential to enhance immunotherapy response. Repurposing myeloperoxidase specific inhibitors may provide a promising therapeutic strategy to expand therapeutic options for pancreatic cancer patients to include immunotherapies.
Project description:Radiation therapy is an important part of the standard of care treatment of brain tumors. However, the efficacy of radiation therapy is limited by the radioresistance of tumor cells, a phenomenon held responsible for the dismal prognosis of the most aggressive brain tumor types. A promising approach to radiosensitization of tumors is the inhibition of cell cycle checkpoint control responsible for cell cycle progression and the maintenance of genomic integrity. Inhibition of the kinases involved in these control mechanisms can abolish cell cycle checkpoints and DNA damage repair and thus increase the sensitivity of tumor cells to radiation and chemotherapy. Here, we discuss preclinical progress in molecular targeting of ATM, ATR, CHK1, CHK2, and WEE1, checkpoint kinases in the treatment of brain tumors, and review current clinical phase I-II trials.
Project description:Renal cell carcinoma (RCC), especially clear cell RCC, is generally considered an immunotherapy-responsive cancer. Recently, the prognosis for patients with locally advanced and metastatic RCC has significantly improved with the regulatory approvals of anti-PD-1/PD-L1/CTLA-4 immune checkpoint inhibitor (ICI)-based regimens. Yet in most cases, RCC will remain initially unresponsive to treatment or will develop resistance over time. Hence, there remains an unmet need to understand what leads to ICI resistance and to develop novel immune and nonimmune treatments to enhance the response to ICIs. In this review, we highlight recently published studies and the latest clinical studies investigating the next generation of immune approaches to locally advanced and metastatic RCC beyond traditional ICIs. These trials include cytokines, gut microbiota-based therapies, novel immune checkpoint agents, vaccines, and chimeric antigen receptor T cells. These agents are being evaluated as monotherapy or in combination with traditional ICIs and will hopefully provide improved outcomes to patients with RCC soon.
Project description:Clear cell renal cell carcinoma (ccRCC) is the seventh most frequently diagnosed tumor in adults in Europe and represents approximately 2.5% of cancer deaths. The molecular biology underlying renal cell carcinoma (RCC) development and progression has been a key milestone in the management of this type of tumor. The discovery of Von Hippel Lindau (VHL) gene alterations that arouse in 50% of ccRCC patients, leads the identification of an intracellular accumulation of HIF and, consequently an increase of VEGFR expression. This change in cell biology represents a new paradigm in the treatment of metastatic renal cancer by targeting angiogenesis. Currently, there are multiple therapeutic drugs available for advanced disease, including therapies against VEGFR with successful results in patients´ survival. Other tyrosine kinases' pathways, including PDGFR, Axl or MET have emerged as key signaling pathways involved in RCC biology. Indeed, promising new drugs targeting those tyrosine kinases have exhibited outstanding efficacy. In this review we aim to present an overview of the central role of these tyrosine kinases' activities in relevant biological processes for kidney cancer and their usefulness in RCC targeted therapy development. In the immunotherapy era, angiogenesis is still an "old guy" that the medical community is trying to fight using "new bullets".
Project description:Immune checkpoint inhibitors have quickly become a critical component to the management of advanced renal cell carcinoma. These therapies have been approved for patients who are treatment-naive and who have progressed on antiangiogenesis agents. Combinations of immune checkpoint inhibitors with antiangiogenesis agents show significant response rates and prolong survival. Adverse events associated with the use of checkpoint inhibition present unique challenges in the management of patients, and careful considerations are needed when checkpoint inhibitors are combined with antiangiogenesis agents. Nevertheless, the improvement in overall survival associated with these agents indicates that they will remain a vital component of kidney cancer treatment.
Project description:Polo-like kinase 1 (Plk1) plays an important role in cell-cycle regulation. Recent work has suggested that Plk1 could be a biomarker of gemcitabine response in pancreatic ductal adenocarcinoma (PDAC). Although targeting Plk1 to treat PDAC has been attempted in clinical trials, the results were not promising, and the mechanisms of resistance to Plk1 inhibition is poorly understood. In addition, the role of Plk1 in PDAC progression requires further elucidation. Here, we showed that Plk1 was associated with poor outcomes in patients with PDAC. In an inducible transgenic mouse line with specific expression of Plk1 in the pancreas, Plk1 overexpression significantly inhibited caerulein-induced acute pancreatitis and delayed development of acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Bioinformatics analyses identified the regulatory networks in which Plk1 is involved in PDAC disease progression, including multiple inflammation-related pathways. Unexpectedly, inhibition or depletion of Plk1 resulted in upregulation of PD-L1 via activation of the NF-κB pathway. Mechanistically, Plk1-mediated phosphorylation of RB at S758 inhibited the translocation of NF-κB to nucleus, inactivating the pathway. Inhibition of Plk1 sensitized PDAC to immune checkpoint blockade therapy through activation of an antitumor immune response. Together, Plk1 suppresses PDAC progression and inhibits NF-κB activity, and targeting Plk1 can potentiate the efficacy of immunotherapy in PDAC.SignificanceInhibition of Plk1 induces upregulation of PD-L1 expression in pancreatic ductal adenocarcinoma, stimulating antitumor immunity and sensitizing tumors to immunotherapy.