Project description:Caveolae are prominent plasmalemmal invaginations in endothelial cells, especially in the lung vasculature, which comprises a vast surface area. PV1 (plasmalemmal vesicle-associated protein-1), a 60-kD glycoprotein expressed in endothelial cells, is essential for generating spoke-like diaphragmatic structures that span the neck region of endothelial caveolae. However, their role in caveolae-mediated uptake and endothelial-barrier function is unknown. Here, we generated mice with endothelial cell-specific deletion of PV1 through tamoxifen-induced Cdh5.Cre.ERT2 (endothelial-specific vascular cadherin.Cre.estrogen receptor 2)-mediated excision of the floxed PV1 allele. We observed that loss of PV1 specifically in endothelial cells increased lung vascular permeability of fluid and protein, indicating that PV1 is required for maintenance of lung vascular-barrier integrity. Endothelial-specific PV1 deletion also increased caveolae-mediated uptake of tracer albumin compared with controls, promoted Au-albumin accumulation in the bulb of caveolae, and induced caveolar swelling. In addition, we observed the progressive loss of plasma proteins from the circulation and reduced arterial pressure resulting from transudation of water and protein as well as edema formation in multiple tissues, including lungs. These changes seen after endothelial-specific PV1 deletion occurred in the absence of disruption of endothelial junctions. We demonstrated that exposure of wild-type mice to endotoxin, which is known to cause acute lung injury and increase protein permeability, also significantly reduced PV1 protein expression. We conclude that the key function of PV1 is to regulate lung endothelial permeability through its ability to restrict the entry of plasma proteins such as albumin into caveolae and their transport through the endothelial barrier.
Project description:Pathologically increased vascular permeability is an important dysfunction in the pathomechanism of life-threatening conditions, such as sepsis, ischemia/reperfusion, or hereditary angioedema (HAE), diseases accompanied by uncontrolled activation of the complement system. HAE for example is caused by the deficiency of C1-inhibitor (the main regulator of early complement activation), which leads to edematous attacks threatening with circulatory collapse. We have previously reported that endothelial cells become activated during HAE attacks. A natural target of C1-inhibitor is mannan-binding lectin-associated serine protease-1 (MASP-1), a multifunctional serine protease, which plays a key role in the activation of complement lectin pathway. We have previously shown that MASP-1 induces the pro-inflammatory activation of endothelial cells and in this study we investigated whether MASP-1 can directly affect endothelial permeability. All experiments were performed on human umbilical vein endothelial cells (HUVECs). Real-time micro electric sensing revealed that MASP-1 decreases the impedance of HUVEC monolayers and in a recently developed permeability test (XperT), MASP-1 dose-dependently increased endothelial paracellular transport. We show that protease activated receptor-1 mediated intracellular Ca2+-mobilization, Rho-kinase activation dependent myosin light chain (MLC) phosphorylation, cytoskeletal actin rearrangement, and disruption of interendothelial junctions are underlying this phenomenon. Furthermore, in a whole-transcriptome microarray analysis MASP-1 significantly changed the expression of 25 permeability-related genes in HUVECs-for example it up-regulated bradykinin B2 receptor expression. According to our results, MASP-1 has potent permeability increasing effects. During infections or injuries MASP-1 may help eliminate the microbes and/or tissue debris by enhancing the extravasation of soluble and cellular components of the immune system, however, it may also play a role in the pathomechanism of diseases, where edema formation and complement lectin pathway activation are simultaneously present. Our findings also raise the possibility that MASP-1 may be a promising target of anti-edema drug development.
Project description:Cancer treatment is one of the major health problems that burden our society. According to the American Cancer Society, over 1.9 million new cancer cases and ∼0.6 million deaths from cancer are expected in the US in 2023. Therapeutic targeting is considered to be the gold standard in cancer treatment. However, when a tumor grows beyond a critical size, its vascular system differentiates abnormally and erratically, creating a heterogeneous endothelial barrier that further restricts drug delivery into tumors. While several methods exist, these prompt tumor migration and the appearance of new metastatic sites. Herein, we propose an innovative method based on magneto-mechanical actuation (MMA) to induce endothelial permeability. This method employs FDA-approved PEGylated superparamagnetic iron oxide nanoparticles (PEG-SPIONs) and alternating nonheating magnetic fields. MMA lies in the translation of magnetic forces into mechanical agitation. As a proof of concept, we developed a 2D cell culture model based on human umbilical vein endothelial cells (HUVEC), which were incubated with PEG-SPIONs and then exposed to different magnetic doses. After adjusting the particle concentration, incubation times, and parameters (amplitude, frequency, and exposure time) of the magnetic field generator, we induced actin filament remodeling and subsequent vascular endothelial-cadherin junction disruption. This led to transient gaps in cell monolayers, through which fluorescein isothiocyanate-dextran was translocated. We observed no cell viability reduction for 3 h of particle incubation up to a concentration of 100 μg/mL in the presence and absence of magnetic fields. For optimal permeability studies, the magnetic field parameters were adjusted to 100 mT, 65 Hz, and 30 min in a pulse mode with 5 min OFF intervals. We found that the endothelial permeability reached the highest value (33%) when 2 h postmagnetic field treatment was used. To explain these findings, a magneto-mechanical transduced stress mechanism mediated by intracellular forces was proposed. This method can open new avenues for targeted drug delivery into anatomic regions within the body for a broad range of disease interventions.
Project description:Tubedown (Tbdn; Naa15), a subunit of the N-terminal acetyltransferase NatA, complexes with the c-Src substrate Cortactin and supports adult retinal homeostasis through regulation of vascular permeability. Here we investigate the role of Tbdn expression on signaling components of retinal endothelial permeability to understand how Tbdn regulates the vasculature and supports retinal homeostasis. Tbdn knockdown-induced hyperpermeability to Albumin in retinal endothelial cells was associated with an increase in the levels of activation of the Src family kinases (SFK) c-Src, Fyn and Lyn and phospho-Cortactin (Tyr421). The knockdown of Cortactin expression reduced Tbdn knockdown-induced permeability to Albumin and the levels of activated SFK. Inhibition of SFK in retinal endothelial cells decreased Tbdn knockdown-induced permeability to Albumin and phospho-Cortactin (Tyr421) levels. Retinal lesions of endothelial-specific Tbdn knockdown mice, with tissue thickening, fibrovascular growth, and hyperpermeable vessels displayed an increase in the levels of activated c-Src. Moreover, the retinal lesions of patients with proliferative diabetic retinopathy (PDR) associated with a loss of Tbdn expression and hyperpermeability to Albumin displayed increased levels of activated SFK in retinal blood vessels. Taken together, these results implicate Tbdn as an important regulator of retinal endothelial permeability and homeostasis by modulating a signaling pathway involving c-Src and Cortactin.
Project description:The inner lining of blood vessels, the endothelium, is made up of endothelial cells. Vascular endothelial (VE)-cadherin protein forms a bond with VE-cadherin from neighboring cells to determine the size of gaps between the cells and thereby regulate the size of particles that can cross the endothelium. Chemical cues such as thrombin, along with mechanical properties of the cell and extracellular matrix are known to affect the permeability of endothelial cells. Abnormal permeability is found in patients suffering from diseases including cardiovascular diseases, cancer, and COVID-19. Even though some of the regulatory mechanisms affecting endothelial permeability are well studied, details of how several mechanical and chemical stimuli acting simultaneously affect endothelial permeability are not yet understood. In this article, we present a continuum-level mechanical modeling framework to study the highly dynamic nature of the VE-cadherin bonds. Taking inspiration from the catch-slip behavior that VE-cadherin complexes are known to exhibit, we model the VE-cadherin homophilic bond as cohesive contact with damage following a traction-separation law. We explicitly model the actin cytoskeleton and substrate to study their role in permeability. Our studies show that mechanochemical coupling is necessary to simulate the influence of the mechanical properties of the substrate on permeability. Simulations show that shear between cells is responsible for the variation in permeability between bicellular and tricellular junctions, explaining the phenotypic differences observed in experiments. An increase in the magnitude of traction force due to disturbed flow that endothelial cells experience results in increased permeability, and it is found that the effect is higher on stiffer extracellular matrix. Finally, we show that the cylindrical monolayer exhibits higher permeability than the planar monolayer under unconstrained cases. Thus, we present a contact mechanics-based mechanochemical model to investigate the variation in the permeability of endothelial monolayer due to multiple loads acting simultaneously.
Project description:Dysregulation of endothelial barrier integrity can lead to vascular leak and potentially fatal oedema. TNF-α controls endothelial permeability during inflammation and requires the actin organizing Ezrin-Radixin-Moesin (ERM) proteins. We identified TRAF2 and NCK-interacting kinase (TNIK) as a kinase directly phosphorylating and activating ERM, specifically at the plasma membrane of primary human endothelial cells. TNIK mediates TNF-α-dependent cellular stiffness and paracellular gap formation in vitro and is essential in driving inflammatory oedema formation in vivo. Unlike its homologs, TNIK activity is negatively and reversibly regulated by H2O2-mediated oxidation of C202 within the kinase domain. TNIK oxidation results in intermolecular disulfide bond formation and loss of kinase activity. Pharmacologic inhibition of endogenous reactive oxygen species production in endothelial cells elevated TNIK-dependent ERM phosphorylation, endothelial cell contraction, and cell rounding. Together, we highlight an interplay between TNIK, ERM phosphorylation, and redox signalling in regulating TNF-induced endothelial cell permeability.
Project description:Cell chirality is a newly discovered intrinsic property of the cell, reflecting the bias of the cell to polarize in the left-right axis. Despite increasing evidence on its substantial role in the asymmetric development of embryos, little is known about implications of cell chirality in physiology and disease. We demonstrate that cell chirality accounts for the nonmonotonic, dose-response relationship between endothelial permeability and protein kinase C (PKC) activation. The permeability of the endothelial cell layer is tightly controlled in our body, and dysregulation often leads to tissue inflammation and diseases. Our results show that low-level PKC activation is sufficient to reverse cell chirality through phosphatidylinositol 3-kinase/AKT signaling and alters junctional protein organization between cells with opposite chirality, leading to an unexpected substantial change in endothelial permeability. Our findings suggest that cell chirality regulates intercellular junctions in important ways, providing new opportunities for drug delivery across tightly connected semipermeable cellular sheets.
Project description:Our earlier study showed that hearing loss in Nhe6 KO animals was due to cochlear damage and that NHE6 is important for normal hearing function. These results were based on the data extracted from experiments involving hearing/sensory structures in organ of Corti. Considering the importance of blood-labyrinth barrier (BLB) in transport of substances between the blood and intrastrial space, and the fact that the physiology and overall properties of the BLB are not completely elucidated so far, we have isolated and subcultured endothelial cells from mouse BLB and by RNAseq we want to compare overall gene expression between Nhe6 KO and WT mice in order to discover further differences between the two phenotypes.
Project description:In the current model of endothelial barrier regulation, the tyrosine kinase SRC is purported to induce disassembly of endothelial adherens junctions (AJs) via phosphorylation of VE cadherin, and thereby increase junctional permeability. Here, using a chemical biology approach to temporally control SRC activation, we show that SRC exerts distinct time-variant effects on the endothelial barrier. We discovered that the immediate effect of SRC activation was to transiently enhance endothelial barrier function as the result of accumulation of VE cadherin at AJs and formation of morphologically distinct reticular AJs. Endothelial barrier enhancement via SRC required phosphorylation of VE cadherin at Y731. In contrast, prolonged SRC activation induced VE cadherin phosphorylation at Y685, resulting in increased endothelial permeability. Thus, time-variant SRC activation differentially phosphorylates VE cadherin and shapes AJs to fine-tune endothelial barrier function. Our work demonstrates important advantages of synthetic biology tools in dissecting complex signaling systems.
Project description:Dengue virus (DENV) infection causes a characteristic pathology in humans involving dysregulation of the vascular system. In some patients with dengue hemorrhagic fever (DHF), vascular pathology can become severe, resulting in extensive microvascular permeability and plasma leakage into tissues and organs. Mast cells (MCs), which line blood vessels and regulate vascular function, are able to detect DENV in vivo and promote vascular leakage. Here, we identified that a MC-derived protease, tryptase, is consequential for promoting vascular permeability during DENV infection, through inducing breakdown of endothelial cell tight junctions. Injected tryptase alone was sufficient to induce plasma loss from the circulation and hypovolemic shock in animals. A potent tryptase inhibitor, nafamostat mesylate, blocked DENV-induced vascular leakage in vivo. Importantly, in two independent human dengue cohorts, tryptase levels correlated with the grade of DHF severity. This study defines an immune mechanism by which DENV can induce vascular pathology and shock.