Unknown

Dataset Information

0

Contribution of Cation Addition to MnO 2 Nanosheets on Stable Co 3 O 4 Nanowires for Aqueous Zinc-Ion Battery.


ABSTRACT: Zinc-based electrochemistry attracts significant attention for practical energy storage owing to its uniqueness in terms of low cost and high safety. In this work, we propose a 2.0-V high-voltage Zn-MnO2 battery with core@shell Co3O4@MnO2 on carbon cloth as a cathode, an optimized aqueous ZnSO4 electrolyte with Mn2+ additive, and a Zn metal anode. Benefitting from the architecture engineering of growing Co3O4 nanorods on carbon cloth and subsequently deposited MnO2 on Co3O4 with a two-step hydrothermal method, the binder-free zinc-ion battery delivers a high power of 2384.7 W kg-1, a high capacity of 245.6 mAh g-1 at 0.5 A g-1, and a high energy density of 212.8 Wh kg-1. It is found that the Mn2+ cations are in situ converted to Mn3O4 during electrochemical operations followed by a phase transition into electroactive MnO2 in our battery system. The charge-storage mechanism of the MnO2-based cathode is Zn2+/Zn and H+ insertion/extraction. This work shines light on designing multivalent cation-based battery devices with high output voltage, safety, and remarkable electrochemical performances.

SUBMITTER: Wang N 

PROVIDER: S-EPMC7539680 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Contribution of Cation Addition to MnO <sub><i>2</i></sub> Nanosheets on Stable Co <sub><i>3</i></sub> O <sub><i>4</i></sub> Nanowires for Aqueous Zinc-Ion Battery.

Wang Nengze N   Yang Gaochen G   Gan Yi Y   Wan Houzhao H   Chen Xu X   Wang Cong C   Tan Qiuyang Q   Ji Jie J   Zhao Xiaojuan X   Liu Pengcheng P   Zhang Jun J   Peng Xiaoniu X   Wang Hanbin H   Wang Yi Y   Ma Guokun G   van Aken Peter A PA   Wang Hao H  

Frontiers in chemistry 20200923


Zinc-based electrochemistry attracts significant attention for practical energy storage owing to its uniqueness in terms of low cost and high safety. In this work, we propose a 2.0-V high-voltage Zn-MnO<sub>2</sub> battery with core@shell Co<sub>3</sub>O<sub>4</sub>@MnO<sub>2</sub> on carbon cloth as a cathode, an optimized aqueous ZnSO<sub>4</sub> electrolyte with Mn<sup>2+</sup> additive, and a Zn metal anode. Benefitting from the architecture engineering of growing Co<sub>3</sub>O<sub>4</sub>  ...[more]