Project description:Gene therapy offers the potential for a cure for patients with hemophilia by establishing continuous endogenous expression of factor VIII or factor IX (FIX) following transfer of a functional gene to replace the hemophilic patient's own defective gene. The hemophilias are ideally suited for gene therapy because a small increment in blood factor levels (≥5% of normal) is associated with significant amelioration of bleeding phenotype in severely affected patients. In 2011, the St. Jude/UCL phase 1/2 trial was the first to provide clear evidence of a stable dose-dependent increase in FIX levels in patients with severe hemophilia B following a single administration of adeno-associated viral (AAV) vectors. Transgenic FIX expression has remained stable at ∼5% of normal in the high-dose cohort over a 7-year follow-up period, resulting in a substantial reduction in spontaneous bleeding and FIX protein usage without toxicity. This study has been followed by unparalleled advances in gene therapy for hemophilia A and B, leading to clotting factor activity approaching normal or near-normal levels associated with a "zero bleed rates" in previously severely affected patients following a single administration of AAV vectors. Thus, AAV gene therapies are likely to alter the treatment paradigm for hemophilia A and B. This review explores recent progress and the remaining limitations that need to be overcome for wider availability of this novel treatment of inherited bleeding disorders.
Project description:Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.
Project description:The cloning of the factor VIII (FVIII) and factor IX (FIX) genes in the 1980s has led to a succession of clinical advances starting with the advent of molecular diagnostic for hemophilia, followed by the development of recombinant clotting factor replacement therapy. Now gene therapy beckons on the back of decades of research that has brought us to the final stages of the approval of 2 products in Europe and United States, thus heralding a new era in the treatment of the hemophilias. Valoctocogene roxaparvovec, the first gene therapy for treatment of hemophilia A, has been granted conditional marketing authorization in Europe. Another approach (etranacogene dezaparvovec, AMT-061) for hemophilia B is also under review by regulators. There are several other gene therapy approaches in earlier stages of development. These approaches entail a one-off infusion of a genetically modified adeno-associated virus (AAV) engineered to deliver either the FVIII or FIX gene to the liver, leading to the continuous endogenous synthesis and secretion of the missing coagulation factor into the circulation by the hepatocytes, thus preventing or reducing bleeding episodes. Ongoing observations show sustained clinical benefit of gene therapy for >5 years following a single administration of an AAV vector without long-lasting or late toxicities. An asymptomatic, self-limiting, immune-mediated rise in alanine aminotransferase is commonly observed within the first 12 months after gene transfer that has the potential to eliminate the transduced hepatocytes in the absence of treatment with immunosuppressive agents such as corticosteroids. The current state of this exciting and rapidly evolving field, as well as the challenges that need to be overcome for the widespread adaptation of this new treatment paradigm, is the subject of this review.
Project description:Concurrent with the development of recombinant factor replacement products, the characterization of the F9 and F8 genes over 3 decades ago allowed for the development of recombinant factor products and made the hemophilias a target disease for gene transfer. The progress of hemophilia gene therapy has been announced in 3 American Society of Hematology scientific plenary sessions, including the first "cure" in a large animal model of hemophilia B in 1998, first in human sustained vector-derived factor IX activity in 2011, and our clinical trial results reporting sustained vector-derived factor IX activity well into the mild or normal range in 2016. This progression to clinically meaningful success combined with numerous ongoing recombinant adeno-associated virus (rAAV)-mediated hemophilia gene transfer clinical trials suggest that the goal of gene therapy to alter the paradigm of hemophilia care may soon be realized. Although several novel therapeutics have recently emerged for hemophilia, gene therapy is unique in its potential for a one-time disease-altering, or even curative, treatment. This review will focus on the prior progress and current clinical trial investigation of rAAV-mediated gene transfer for hemophilia A and B.
Project description:Hemophilia is a monogenic mutational disease affecting coagulation factor VIII or factor IX genes. The palliative treatment of choice is based on the use of safe and effective recombinant clotting factors. Advanced therapies will be curative, ensuring stable and durable concentrations of the defective circulating factor. Results have so far been encouraging in terms of levels and times of expression using mainly adeno-associated vectors. However, these therapies are associated with immunogenicity and hepatotoxicity. Optimizing the vector serotypes and the transgene (variants) will boost clotting efficacy, thus increasing the viability of these protocols. It is essential that both physicians and patients be informed about the potential benefits and risks of the new therapies, and a register of gene therapy patients be kept with information of the efficacy and long-term adverse events associated with the treatments administered. In the context of hemophilia, gene therapy may result in (particularly indirect) cost savings and in a more equitable allocation of treatments. In the case of hemophilia A, further research is needed into how to effectively package the large factor VIII gene into the vector; and in the case of hemophilia B, the priority should be to optimize both the vector serotype, reducing its immunogenicity and hepatotoxicity, and the transgene, boosting its clotting efficacy so as to minimize the amount of vector administered and decrease the incidence of adverse events without compromising the efficacy of the protein expressed.
Project description:Concurrent with the development of recombinant factor replacement products, the characterization of the F9 and F8 genes over 3 decades ago allowed for the development of recombinant factor products and made the hemophilias a target disease for gene transfer. The progress of hemophilia gene therapy has been announced in 3 American Society of Hematology scientific plenary sessions, including the first "cure" in a large animal model of hemophilia B in 1998, first in human sustained vector-derived factor IX activity in 2011, and our clinical trial results reporting sustained vector-derived factor IX activity well into the mild or normal range in 2016. This progression to clinically meaningful success combined with numerous ongoing recombinant adeno-associated virus (rAAV)-mediated hemophilia gene transfer clinical trials suggest that the goal of gene therapy to alter the paradigm of hemophilia care may soon be realized. Although several novel therapeutics have recently emerged for hemophilia, gene therapy is unique in its potential for a one-time disease-altering, or even curative, treatment. This review will focus on the prior progress and current clinical trial investigation of rAAV-mediated gene transfer for hemophilia A and B.
Project description:AbstractAfter successful efforts in adeno-associated virus (AAV) gene addition for hemophilia B gene therapy, the development of valoctocogene roxaparvovec (Roctavian; Biomarin) over the past decade represents a potential new hemophilia A (HA) treatment paradigm. Roctavian is the first licensed HA gene therapy that was conditionally approved in Europe in August 2022 and approved in the United States in June 2023. Beyond Roctavian, there are ongoing pivotal trials of additional AAV vectors for HA, others that are progressing through preclinical development or early-phase clinical trial, as well as non-AAV approaches in clinical development. This review focuses on the clinical development of Roctavian for which the collective clinical trials represent the largest body of work thus far available for any licensed AAV product. From this pioneering clinical development, several outstanding questions have emerged for which the answers will undoubtedly be important to the clinical adaptation of Roctavian and future efforts in HA gene therapy. Most notably, unexplained year-over-year declines in factor VIII (FVIII) expression after Roctavian treatment contrast with stable FVIII expression observed in other AAV HA gene therapy clinical trials with more modest initial FVIII expression. This observation has been qualitatively replicated in animal models that may permit mechanistic study. The development and approval of Roctavian is a landmark in HA therapeutics, although next-generation approaches are needed before HA gene therapy fulfills its promise of stable FVIII expression that normalizes hemostasis.
Project description:In contrast to other diverse therapies for the X-linked bleeding disorder hemophilia that are currently in clinical development, gene therapy holds the promise of a lasting cure with a single drug administration. Near-to-complete correction of hemophilia A (factor VIII deficiency) and hemophilia B (factor IX deficiency) have now been achieved in patients by hepatic in vivo gene transfer. Adeno-associated viral vectors with different viral capsids that have been engineered to express high-level, and in some cases hyperactive, coagulation factors were employed. Patient data support that sustained endogenous production of clotting factor as a result of gene therapy eliminates the need for infusion of coagulation factors (or alternative drugs that promote coagulation), and may therefore ultimately also reduce treatment costs. However, mild liver toxicities have been observed in some patients receiving high vector doses. In some but not all instances, the toxicities correlated with a T-cell response directed against the viral capsid, prompting use of immune suppression. In addition, not all patients can be treated because of preexisting immunity to viral capsids. Nonetheless, studies in animal models of hemophilia suggest that the approach can also be used for immune tolerance induction to prevent or eliminate inhibitory antibodies against coagulation factors. These can form in traditional protein replacement therapy and represent a major complication of treatment. The current review provides a summary and update on advances in clinical gene therapies for hemophilia and its continued development.