Project description:Current clinical strategies to assess benefits from hearing aids (HAs) are based on self-reported questionnaires and speech-in-noise (SIN) tests; which require behavioural cooperation. Instead, objective measures based on Auditory Brainstem Responses (ABRs) to speech stimuli would not require the individuals' cooperation. Here, we re-analysed an existing dataset to predict behavioural measures with speech-ABRs using regression trees. Ninety-two HA users completed a self-reported questionnaire (SSQ-Speech) and performed two aided SIN tests: sentences in noise (BKB-SIN) and vowel-consonant-vowels (VCV) in noise. Speech-ABRs were evoked by a 40 ms [da] and recorded in 2x2 conditions: aided vs. unaided and quiet vs. background noise. For each recording condition, two sets of features were extracted: 1) amplitudes and latencies of speech-ABR peaks, 2) amplitudes and latencies of speech-ABR F0 encoding. Two regression trees were fitted for each of the three behavioural measures with either feature set and age, digit-span forward and backward, and pure tone average (PTA) as possible predictors. The PTA was the only predictor in the SSQ-Speech trees. In the BKB-SIN trees, performance was predicted by the aided latency of peak F in quiet for participants with PTAs between 43 and 61 dB HL. In the VCV trees, performance was predicted by the aided F0 encoding latency and the aided amplitude of peak VA in quiet for participants with PTAs ≤ 47 dB HL. These findings indicate that PTA was more informative than any speech-ABR measure, as these were relevant only for a subset of the participants. Therefore, speech-ABRs evoked by a 40 ms [da] are not a clinical predictor of behavioural measures in HA users.
Project description:Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition.
Project description:ObjectivesTo determine whether auditory brainstem response (ABR) wave I amplitude is associated with measures of auditory perception in young people with normal distortion product otoacoustic emissions (DPOAEs) and varying levels of noise exposure history.DesignTinnitus, loudness tolerance, and speech perception ability were measured in 31 young military Veterans and 43 non-Veterans (19 to 35 years of age) with normal pure-tone thresholds and DPOAEs. Speech perception was evaluated in quiet using Northwestern University Auditory Test (NU-6) word lists and in background noise using the words in noise (WIN) test. Loudness discomfort levels were measured using 1-, 3-, 4-, and 6-kHz pulsed pure tones. DPOAEs and ABRs were collected in each participant to assess outer hair cell and auditory nerve function.ResultsThe probability of reporting tinnitus in this sample increased by a factor of 2.0 per 0.1 µV decrease in ABR wave I amplitude (95% Bayesian confidence interval, 1.1 to 5.0) for males and by a factor of 2.2 (95% confidence interval, 1.0 to 6.4) for females after adjusting for sex and DPOAE levels. Similar results were obtained in an alternate model adjusted for pure-tone thresholds in addition to sex and DPOAE levels. No apparent relationship was found between wave I amplitude and either loudness tolerance or speech perception in quiet or noise.ConclusionsReduced ABR wave I amplitude was associated with an increased risk of tinnitus, even after adjusting for DPOAEs and sex. In contrast, wave III and V amplitudes had little effect on tinnitus risk. This suggests that changes in peripheral input at the level of the inner hair cell or auditory nerve may lead to increases in central gain that give rise to the perception of tinnitus. Although the extent of synaptopathy in the study participants cannot be measured directly, these findings are consistent with the prediction that tinnitus may be a perceptual consequence of cochlear synaptopathy.
Project description:Evaluation of patients who are unable to provide behavioral responses on standard clinical measures is challenging due to the lack of standard objective (non-behavioral) clinical audiological measures that assess the outcome of an intervention (e.g., hearing aids). Brainstem responses to short consonant-vowel stimuli (speech-auditory brainstem responses [speech-ABRs]) have been proposed as a measure of subcortical encoding of speech, speech detection, and speech-in-noise performance in individuals with normal hearing. Here, we investigated the potential application of speech-ABRs as an objective clinical outcome measure of speech detection, speech-in-noise detection and recognition, and self-reported speech understanding in 98 adults with sensorineural hearing loss. We compared aided and unaided speech-ABRs, and speech-ABRs in quiet and in noise. In addition, we evaluated whether speech-ABR F0 encoding (obtained from the complex cross-correlation with the 40 ms [da] fundamental waveform) predicted aided behavioral speech recognition in noise or aided self-reported speech understanding. Results showed that (a) aided speech-ABRs had earlier peak latencies, larger peak amplitudes, and larger F0 encoding amplitudes compared to unaided speech-ABRs; (b) the addition of background noise resulted in later F0 encoding latencies but did not have an effect on peak latencies and amplitudes or on F0 encoding amplitudes; and (c) speech-ABRs were not a significant predictor of any of the behavioral or self-report measures. These results show that speech-ABR F0 encoding is not a good predictor of speech-in-noise recognition or self-reported speech understanding with hearing aids. However, our results suggest that speech-ABRs may have potential for clinical application as an objective measure of speech detection with hearing aids.
Project description:We examined context-dependent encoding of speech in children with and without developmental dyslexia by measuring auditory brainstem responses to a speech syllable presented in a repetitive or variable context. Typically developing children showed enhanced brainstem representation of features related to voice pitch in the repetitive context, relative to the variable context. In contrast, children with developmental dyslexia exhibited impairment in their ability to modify representation in predictable contexts. From a functional perspective, we found that the extent of context-dependent encoding in the auditory brainstem correlated positively with behavioral indices of speech perception in noise. The ability to sharpen representation of repeating elements is crucial to speech perception in noise, since it allows superior "tagging" of voice pitch, an important cue for segregating sound streams in background noise. The disruption of this mechanism contributes to a critical deficit in noise-exclusion, a hallmark symptom in developmental dyslexia.
Project description:We characterized the proteome of the auditory brainstem of a chick embryo on embryonic day 13, when apoptosis occurs in auditory nuclei. We identified caspase substrates by searching the peptidome for peptides C-terminal to caspase-typical cleavage sites.
Project description:The frequency-specific tone-evoked auditory brainstem response (ABR) is an indispensable tool in both the audiology clinic and research laboratory. Most frequently, the toneburst ABR is used to estimate hearing thresholds in infants, toddlers, and other patients for whom behavioral testing is not feasible. Therefore, results of the ABR exam form the basis for decisions regarding interventions and hearing habilitation with implications extending far into the child's future. Currently, responses are elicited by periodic sequences of toneburst stimuli presented serially to one ear at a time, which take a long time to measure multiple frequencies and intensities, and provide incomplete information if the infant wakes up early. Here, we describe a new method, the parallel ABR (pABR), which uses randomly timed toneburst stimuli to simultaneously acquire ABR waveforms to five frequencies in both ears. Here, we describe the pABR and quantify its effectiveness in addressing the greatest drawback of current methods: test duration. We show that in adults with normal hearing the pABR yields high-quality waveforms over a range of intensities, with similar morphology to the standard ABR in a fraction of the recording time. Furthermore, longer latencies and smaller amplitudes for low frequencies at a high intensity evoked by the pABR versus serial ABR suggest that responses may have better place specificity due to the masking provided by the other simultaneous toneburst sequences. Thus, the pABR has substantial potential for facilitating faster accumulation of more diagnostic information that is important for timely identification and treatment of hearing loss.
Project description:PurposeDevelopmental dyslexia is proposed to involve selective procedural memory deficits with intact declarative memory. Recent research in the domain of category learning has demonstrated that adults with dyslexia have selective deficits in Information-Integration (II) category learning that is proposed to rely on procedural learning mechanisms and unaffected Rule-Based (RB) category learning that is proposed to rely on declarative, hypothesis testing mechanisms. Importantly, learning mechanisms also change across development, with distinct developmental trajectories in both procedural and declarative learning mechanisms. It is unclear how dyslexia in childhood should influence auditory category learning, a critical skill for speech perception and reading development.MethodWe examined auditory category learning performance and strategies in 7- to 12-year-old children with dyslexia (n = 25; nine females, 16 males) and typically developing controls (n = 25; 13 females, 12 males). Participants learned nonspeech auditory categories of spectrotemporal ripples that could be optimally learned with either RB selective attention to the temporal modulation dimension or procedural integration of information across spectral and temporal dimensions. We statistically compared performance using mixed-model analyses of variance and identified strategies using decision-bound computational models.ResultsWe found that children with dyslexia have an apparent selective RB category learning deficit, rather than a selective II learning deficit observed in prior work in adults with dyslexia.ConclusionThese results suggest that the important skill of auditory category learning is impacted in children with dyslexia and throughout development, individuals with dyslexia may develop compensatory strategies that preserve declarative learning while developing difficulties in procedural learning.Supplemental materialhttps://doi.org/10.23641/asha.25148519.
Project description:Auditory sensitivity in three species of woodpeckers was estimated using the auditory brainstem response (ABR), a measure of the summed electrical activity of auditory neurons. For all species, the ABR waveform showed at least two, and sometimes three prominent peaks occurring within 10 ms of stimulus onset. Also ABR peak amplitude increased and latency decreased as a function of increasing sound pressure levels. Results showed no significant differences in overall auditory abilities between the three species of woodpeckers. The average ABR audiogram showed that woodpeckers have lowest thresholds between 1.5 and 5.7 kHz. The shape of the average woodpecker ABR audiogram was similar to the shape of the ABR-measured audiograms of other small birds at most frequencies, but at the highest frequency data suggest that woodpecker thresholds may be lower than those of domesticated birds, while similar to those of wild birds.
Project description:The auditory brainstem implant (ABI) can provide hearing sensation to individuals where the auditory nerve is damaged. However, patient outcomes with the ABI are typically much poorer than those for cochlear implant recipients. A major limitation to ABI outcomes is the number of implanted electrodes that can produce auditory responses to electric stimulation. One of the greatest challenges in ABI surgery is the intraoperative positioning of the electrode paddle, which must fit snugly within the cochlear nucleus complex. While there presently is no optimal procedure for intraoperative electrode positioning, intraoperative assessments may provide useful information regarding viable electrodes that may be included in patients’ clinical speech processors. Currently, there is limited knowledge regarding the relationship between intraoperative data and post-operative outcomes. Furthermore, the relationship between initial ABI stimulation with and long-term perceptual outcomes is unknown. In this retrospective study, we reviewed intraoperative electrophysiological data from 24 ABI patients (16 adults and 8 children) obtained with two stimulation approaches that differed in terms of neural recruitment. The interoperative electrophysiological recordings were used to estimate the number of viable electrodes and were compared to the number of activated electrodes at initial clinical fitting. Regardless of the stimulation approach, the intraoperative estimate of viable electrodes greatly overestimated the number of active electrodes in the clinical map. The number of active electrodes was associated with long-term perceptual outcomes. Among patients with 10-year follow-up, at least 11/21 active electrodes were needed to support good word detection and closed-set recognition and 14/21 electrodes to support good open-set word and sentence recognition. Perceptual outcomes were better for children than for adults, despite a lower number of active electrodes.