Ontology highlight
ABSTRACT: Plain language summary
Photosynthesis is the most essential process for life on Earth, but gradually changing environmental conditions such as increasing concentrations of atmospheric trace gases, rising temperatures or reduced water availability could adversely affect the photosynthetic productivity. The recently launched TROPOspheric Monitoring Instrument (TROPOMI) is designed to monitor atmospheric trace gases and air pollutants with an unprecedented resolution in space and time, while its radiometric performance also permits us to see a weak electromagnetic signal emitted by photosynthetically active vegetation - solar induced chlorophyll fluorescence (SIF). Mounting evidence suggests that SIF observations from satellite instruments augment our abilities to track the photosynthetic performance and carbon uptake of terrestrial vegetation. In this study, we present the first TROPOMI SIF retrievals, largely outperforming previous and existing capabilities for a spatial continuous monitoring of SIF from space.
SUBMITTER: Koehler P
PROVIDER: S-EPMC7580822 | biostudies-literature | 2018 Oct
REPOSITORIES: biostudies-literature
Geophysical research letters 20181002 19
In recent years, solar-induced chlorophyll fluorescence (SIF) retrieved from space borne spectrometers has been extensively used as a proxy for terrestrial photosynthesis at relatively sparse temporal and spatial scales. The near-infrared band of the recently launched TROPOspheric Monitoring Instrument (TROPOMI) features the required spectral resolution and signal-to-noise ratio to retrieve SIF in a spectral range devoid of atmospheric absorption features. We find that initial TROPOMI spectra me ...[more]