Project description:Review of the analytical and clinical validity as well as of the clinical utility of DNA-based testing for mutations in PGM3 in diagnostic, predictive and prenatal settings, and for risk assessment in relatives.
Project description:We present a boy, admitted at 4 months, with facial dysmorphism, hypertrichosis, loose skin, bilateral inguinal hernia, severe hypotonia, psychomotor disability, seizures with hypsarrhythmia (West syndrome), hepatosplenomegaly, increased serum transaminases, iris coloboma, glaucoma, corneal clouding and bilateral dilated lateral ventricles, and extra-axial post-cerebellar space. Serum transferrin isoelectrofocusing (IEF) showed a type 1 pattern. Whole-exome genotyping showed a previously reported homozygous nonsense mutation c.320G>A; p.Trp107X in SRD5A3. Epilepsy and glaucoma have been reported only once in the 19 described SRD5A3-congenital glycosylation defect patients, and corneal clouding not at all.
Project description:1. NAME OF THE DISEASE (SYNONYMS): Primary congenital glaucoma (PCG). Glaucoma, congenital (GLC). 2. OMIM# OF THE DISEASE: 231300- GLC3A. 600975- GLC3B. 613085- GLC3C. 613086- GLC3D. 617272- GLC3E. 3. NAME OF THE ANALYSED GENES OR DNA/CHROMOSOME SEGMENTS: CYP1B1. LTBP2. MYOC. FOXC1. TEK. 4. OMIM# OF THE GENE(S): CYP1B1 MIM# 601771. LTBP2 MIM# 602091. MYOC MIM# 601652. FOXC1 MIM# 601090. TEK MIM# 600221. Review of the analytical and clinical validity, as well as of the clinical utility of DNA-based testing for variants in the CYP1B1, LTBP2 and MYOC gene(s) in ⊠ diagnostic, ⊠ predictive and ⊠ prenatal settings and for ⊠ risk assessment in relatives.
Project description:N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the congenital disorders of glycosylation (CDGs). We describe a new type of CDG caused by mutations in the steroid 5alpha-reductase type 3 (SRD5A3) gene. Patients have mental retardation and ophthalmologic and cerebellar defects. We found that SRD5A3 is necessary for the reduction of the alpha-isoprene unit of polyprenols to form dolichols, required for synthesis of dolichol-linked monosaccharides, and the oligosaccharide precursor used for N-glycosylation. The presence of residual dolichol in cells depleted for this enzyme suggests the existence of an unexpected alternative pathway for dolichol de novo biosynthesis. Our results thus suggest that SRD5A3 is likely to be the long-sought polyprenol reductase and reveal the genetic basis of one of the earliest steps in protein N-linked glycosylation.