Unknown

Dataset Information

0

Organ-on-a-chip technologies for biomedical research and drug development: A focus on the vasculature.


ABSTRACT: Current biomedical models fail to replicate the complexity of human biology. Consequently, almost 90% of drug candidates fail during clinical trials after decades of research and billions of investments in drug development. Despite their physiological similarities, animal models often misrepresent human responses, and instead, trigger ethical and societal debates regarding their use. The overall aim across regulatory entities worldwide is to replace, reduce, and refine the use of animal experimentation, a concept known as the Three Rs principle. In response, researchers develop experimental alternatives to improve the biological relevance of in vitro models through interdisciplinary approaches. This article highlights the emerging organ-on-a-chip technologies, also known as microphysiological systems, with a focus on models of the vasculature. The cardiovascular system transports all necessary substances, including drugs, throughout the body while in charge of thermal regulation and communication between other organ systems. In addition, we discuss the benefits, limitations, and challenges in the widespread use of new biomedical models. Coupled with patient-derived induced pluripotent stem cells, organ-on-a-chip technologies are the future of drug discovery, development, and personalized medicine.

SUBMITTER: Veliz DS 

PROVIDER: S-EPMC7614466 | biostudies-literature | 2023 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Organ-on-a-chip technologies for biomedical research and drug development: A focus on the vasculature.

Veliz Diosangeles Soto DS   Lin Kai-Lan KL   Sahlgren Cecilia C  

Smart medicine 20230224 1


Current biomedical models fail to replicate the complexity of human biology. Consequently, almost 90% of drug candidates fail during clinical trials after decades of research and billions of investments in drug development. Despite their physiological similarities, animal models often misrepresent human responses, and instead, trigger ethical and societal debates regarding their use. The overall aim across regulatory entities worldwide is to replace, reduce, and refine the use of animal experime  ...[more]

Similar Datasets

| S-EPMC7175276 | biostudies-literature
| S-EPMC10033683 | biostudies-literature
| S-EPMC9712653 | biostudies-literature
| S-EPMC527697 | biostudies-literature
| S-EPMC7284904 | biostudies-literature
| S-EPMC7939064 | biostudies-literature
| S-EPMC4879054 | biostudies-literature
| S-EPMC7338764 | biostudies-literature
| S-EPMC6933845 | biostudies-literature
| S-EPMC9478476 | biostudies-literature