Project description:Studies of accuracy and reaction time in decision making often observe a speed-accuracy tradeoff, where either accuracy or reaction time is sacrificed for the other. While this effect may mask certain multisensory benefits in performance when accuracy and reaction time are separately measured, drift diffusion models (DDMs) are able to consider both simultaneously. However, drift diffusion models are often limited by large sample size requirements for reliable parameter estimation. One solution to this restriction is the use of hierarchical Bayesian estimation for DDM parameters. Here, we utilize hierarchical drift diffusion models (HDDMs) to reveal a multisensory advantage in auditory-visual numerosity discrimination tasks. By fitting this model with a modestly sized dataset, we also demonstrate that large sample sizes are not necessary for reliable parameter estimation.
Project description:Face masks slow the spread of SARS-CoV-2, but it has been unknown how masks might reshape social interaction. One important possibility is that masks may influence how individuals communicate emotion through facial expressions. Here, we clarify to what extent-and how-masks influence facial emotion communication, through drift-diffusion modeling (DDM). Over two independent pre-registered studies, conducted three and 6 months into the COVID-19 pandemic, online participants judged expressions of 6 emotions (anger, disgust, fear, happiness, sadness, surprise) with the lower or upper face "masked" or unmasked. Participants in Study 1 (N = 228) correctly identified expressions above chance with lower face masks. However, they were less likely-and slower-to correctly identify these expressions relative to without masks, and they accumulated evidence for emotion more slowly-via decreased drift rate in DDM. This pattern replicated and intensified 3 months later in Study 2 (N = 264). These findings highlight how effectively individuals still communicate with masks, but also explain why they can experience difficulties communicating when masked. By revealing evidence accumulation as the underlying mechanism, this work suggests that time-sensitive situations may risk miscommunication with masks. This research could inform critical interventions to promote continued mask wearing as needed.
Project description:According to embodied cognition accounts, viewing others' facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others' facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a) explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), (b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing (control condition). It was hypothesised that (1) experimental condition (a) and (b) result in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion recognition accuracy from others' faces compared to (c), (3) experimental condition (b) lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c). Participants (42 males, 42 females) underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography (EMG) was recorded from five facial muscle sites. The experimental conditions' order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed.
Project description:The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/
Project description:Understanding how adult humans learn nonnative speech categories such as tone information has shed novel insights into the mechanisms underlying experience-dependent brain plasticity. Scientists have traditionally examined these questions using longitudinal learning experiments under a multi-category decision making paradigm. Drift-diffusion processes are popular in such contexts for their ability to mimic underlying neural mechanisms. Motivated by these problems, we develop a novel Bayesian semiparametric inverse Gaussian drift-diffusion mixed model for multi-alternative decision making in longitudinal settings. We design a Markov chain Monte Carlo algorithm for posterior computation. We evaluate the method's empirical performances through synthetic experiments. Applied to our motivating longitudinal tone learning study, the method provides novel insights into how the biologically interpretable model parameters evolve with learning, differ between input-response tone combinations, and differ between well and poorly performing adults. supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Project description:This work seeks to develop exact confidence interval estimators for figures of merit that describe the performance of linear observers, and to demonstrate how these estimators can be used in the context of x-ray computed tomography (CT). The figures of merit are the receiver operating characteristic (ROC) curve and associated summary measures, such as the area under the ROC curve. Linear computerized observers are valuable for optimization of parameters associated with image reconstruction algorithms and data acquisition geometries. They provide a means to perform assessment of image quality with metrics that account not only for shift-variant resolution and nonstationary noise but that are also task-based.We suppose that a linear observer with fixed template has been defined and focus on the problem of assessing the performance of this observer for the task of deciding if an unknown lesion is present at a specific location. We introduce a point estimator for the observer signal-to-noise ratio (SNR) and identify its sampling distribution. Then, we show that exact confidence intervals can be constructed from this distribution. The sampling distribution of our SNR estimator is identified under the following hypotheses: (i) the observer ratings are normally distributed for each class of images and (ii) the variance of the observer ratings is the same for each class of images. These assumptions are, for example, appropriate in CT for ratings produced by linear observers applied to low-contrast lesion detection tasks.Unlike existing approaches to the estimation of ROC confidence intervals, the new confidence intervals presented here have exactly known coverage probabilities when our data assumptions are satisfied. Furthermore, they are applicable to the most commonly used ROC summary measures, and they may be easily computed (a computer routine is supplied along with this article on the Medical Physics Website). The utility of our exact interval estimators is demonstrated through an image quality evaluation example using real x-ray CT images. Also, strong robustness is shown to potential deviations from the assumption that the ratings for the two classes of images have equal variance. Another aspect of our interval estimators is the fact that we can calculate their mean length exactly for fixed parameter values, which enables precise investigations of sampling effects. We demonstrate this aspect by exploring the potential reduction in statistical variability that can be gained by using additional images from one class, if such images are readily available. We find that when additional images from one class are used for an ROC study, the mean AUC confidence interval length for our estimator can decrease by as much as 35%.We have shown that exact confidence intervals can be constructed for ROC curves and for ROC summary measures associated with fixed linear computerized observers applied to binary discrimination tasks at a known location. Although our intervals only apply under specific conditions, we believe that they form a valuable tool for the important problem of optimizing parameters associated with image reconstruction algorithms and data acquisition geometries, particularly in x-ray CT.
Project description:Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated with each individual's point estimate of performance. Here, we discuss a Bayesian hierarchical diffusion model and apply it to RT data. This model allows researchers to decompose performance into meaningful psychological processes and to account optimally for individual differences and commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion model decomposition by applying it to performance on Approach-Avoidance Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model overcomes important limitations of current analysis procedures and provides deeper insight in latent psychological processes of interest.
Project description:Perceptual decision making can be described as a process of accumulating evidence to a bound which has been formalized within drift-diffusion models (DDMs). Recently, an equivalent Bayesian model has been proposed. In contrast to standard DDMs, this Bayesian model directly links information in the stimulus to the decision process. Here, we extend this Bayesian model further and allow inter-trial variability of two parameters following the extended version of the DDM. We derive parameter distributions for the Bayesian model and show that they lead to predictions that are qualitatively equivalent to those made by the extended drift-diffusion model (eDDM). Further, we demonstrate the usefulness of the extended Bayesian model (eBM) for the analysis of concrete behavioral data. Specifically, using Bayesian model selection, we find evidence that including additional inter-trial parameter variability provides for a better model, when the model is constrained by trial-wise stimulus features. This result is remarkable because it was derived using just 200 trials per condition, which is typically thought to be insufficient for identifying variability parameters in DDMs. In sum, we present a Bayesian analysis, which provides for a novel and promising analysis of perceptual decision making experiments.
Project description:Spatial summation of perimetric stimuli has been used to derive conclusions about the spatial extent of retinal-cortical convergence, mostly from the size of the critical area of summation (Ricco's area, RA) and critical number of retinal ganglion cells (RGCs). However, spatial summation is known to change dynamically with stimulus duration. Conversely, temporal summation and critical duration also vary with stimulus size. Such an important and often neglected spatiotemporal interaction has important implications for modeling perimetric sensitivity in healthy observers and for formulating hypotheses for changes measured in disease. In this work, we performed experiments on visually heathy observers confirming the interaction of stimulus size and duration in determining summation responses in photopic conditions. We then propose a simplified computational model that captures these aspects of perimetric sensitivity by modelling the total retinal input, the combined effect of stimulus size, duration, and retinal cones-to-RGC ratio. We additionally show that, in the macula, the enlargement of RA with eccentricity might not correspond to a constant critical number of RGCs, as often reported, but to a constant critical total retinal input. We finally compare our results with previous literature and show possible implications for modeling disease, especially glaucoma.
Project description:The natural environment fluctuates for virtually every population of organisms. As a result, the fitness of a mutant may vary temporally. While commonly used for summarizing the effect of fluctuating selection on the mutant, geometric mean fitness can be misleading under some circumstances due to the influence of genetic drift. Here, we show by mathematical proof and computer simulation that, with genetic drift, the geometric mean fitness does not accurately reflect the overall effect of fluctuating selection. We propose an alternative measure based on the average expected allele frequency change caused by selection and demonstrate that this measure-effective fitness-better captures the overall effect of fluctuating selection in the presence of drift.