Ontology highlight
ABSTRACT:
SUBMITTER: Widman AJ
PROVIDER: S-EPMC7616143 | biostudies-literature | 2024 Jun
REPOSITORIES: biostudies-literature
Widman Adam J AJ Shah Minita M Frydendahl Amanda A Halmos Daniel D Khamnei Cole C CC Øgaard Nadia N Rajagopalan Srinivas S Arora Anushri A Deshpande Aditya A Hooper William F WF Quentin Jean J Bass Jake J Zhang Mingxuan M Langanay Theophile T Andersen Laura L Steinsnyder Zoe Z Liao Will W Rasmussen Mads Heilskov MH Rasmussen Mads Heilskov MH Henriksen Tenna Vesterman TV Jensen Sarah Østrup SØ Nors Jesper J Therkildsen Christina C Sotelo Jesus J Brand Ryan R Schiffman Joshua S JS Shah Ronak H RH Cheng Alexandre Pellan AP Maher Colleen C Spain Lavinia L Krause Kate K Frederick Dennie T DT den Brok Wendie W Lohrisch Caroline C Shenkier Tamara T Simmons Christine C Villa Diego D Mungall Andrew J AJ Moore Richard R Zaikova Elena E Cerda Viviana V Kong Esther E Lai Daniel D Malbari Murtaza S MS Marton Melissa M Manaa Dina D Winterkorn Lara L Gelmon Karen K Callahan Margaret K MK Boland Genevieve G Potenski Catherine C Wolchok Jedd D JD Saxena Ashish A Turajlic Samra S Imielinski Marcin M Berger Michael F MF Aparicio Sam S Altorki Nasser K NK Postow Michael A MA Robine Nicolas N Andersen Claus Lindbjerg CL Landau Dan A DA
Nature medicine 20240614 6
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and ...[more]