Project description:The coronavirus disease 2019 (COVID-19) is an on-going pandemic caused by the SARS-coronavirus-2 (SARS-CoV-2) which targets the respiratory system of humans. The published data show that children, unlike adults, are less susceptible to contracting the disease. This article aims at understanding why children constitute a minor group among hospitalized COVID-19 patients. Here, we hypothesize that the measles, mumps, and rubella (MMR) vaccine could provide a broad neutralizing antibody against numbers of diseases, including COVID-19. Our hypothesis is based on the 30 amino acid sequence homology between the SARS-CoV-2 Spike (S) glycoprotein (PDB: 6VSB) of both the measles virus fusion (F1) glycoprotein (PDB: 5YXW_B) and the rubella virus envelope (E1) glycoprotein (PDB: 4ADG_A). Computational analysis of the homologous region detected the sequence as antigenic epitopes in both measles and rubella. Therefore, we believe that humoral immunity, created through the MMR vaccination, provides children with advantageous protection against COVID-19 as well, however, an experimental analysis is required.
Project description:Cross-protection from previous live attenuated vaccines is proposed to explain the low impact of COVID-19 on children. This study aimed to evaluate the effect of live attenuated MMR vaccines on the risk of being hospitalized for COVID-19 in children. An exposed (MMR vaccine)-non-exposed cohort study was conducted using the nationwide French National Health Data System (SNDS). We included children born between 1 January 2009 and 31 December 2019. Exposure was defined as a claim of at least one dose of MMR vaccine since birth. Hospitalization for COVID-19 was defined using main diagnostic ICD10 codes. Non-conditional logistic regression was used to calculate the adjusted odds ratios (aORs) of the association between MMR exposure and hospitalization for COVID-19, controlling for socio-demographic and socio-economic factors, co-morbidities, and general health. In total, 6,800,542 (median age 6 IQR [3-8] years) children exposed to a MMR vaccine and 384,162 (6 [3-9] years) not exposed were followed up with for 18 months. Among them, 873 exposed to the MMR vaccine and 38 who were not exposed were hospitalized for COVID-19. In a multi-variate analysis, the exposure of children to MMR vaccination was not associated with a decreased risk of COVID-19 hospitalization versus non-exposure (aOR (95%CI) = 1.09 [0.81-1.48]). A stratified analysis by age showed an aOR = 1.03 [0.64-1.66] for children aged 1-4, an aOR = 1.38 [0.82-2.31] for those aged 5-9, and an aOR = 1.11 [0.54-2.29] for those aged 10-12. Our study suggests that the live attenuated MMR vaccine does not protect children against COVID-19 hospitalization.
Project description:The worldwide struggle against the coronavirus disease 2019 (COVID-19) as a public health crisis continues to sweep across the globe. Up to now, effective antiviral treatment against COVID-19 is not available. Therefore, throughout virus infections, a thorough clarification of the virus-host immune system interactions will be most probably helpful to encounter these challenges. Emerging evidence suggests that just like SARS and MERS, COVID-19 primarily suppresses the innate immune system, enabling its stable propagation during the early stage of infection. Consequently, proinflammatory cytokines and chemokines have been increasing during infection progression associated with severe lung pathology. It is imperative to consider hyper inflammation in vaccine designing, as vaccine-induced immune responses must have a protective role against infection without leading to immunopathology. Among the front-line responders to viral infections, Natural Killer (NK) cells have immense therapeutic potential, forming a bridge between innate and adaptive responses. A subset of NK cells exhibits putatively increased effector functions against viruses following pathogen-specific and immunization. Memory NK cells have higher cytotoxicity and effector activity, compared with the conventional NK cells. As a pioneering strategy, prompt accumulation and long-term maintenance of these memory NK cells could be an efficacious viral treatment. According to the high prevalence of human cytomegalovirus (HCMV) infection in the world, it remains to be determined whether HCMV adaptive NK cells could play a protective role against this new emerging virus. In addition, the new adaptive-like KIR+NKG2C+ NK cell subset (the adaptive-like lung tissue residue [tr]NK cell) in the context of the respiratory infection at this site could specifically exhibit the expansion upon COVID-19. Another aspect of NK cells we should note, utilizing modified NK cells such as allogeneic off-the-shelf CAR-NK cells as a state-of-the-art strategy for the treatment of COVID-19. In this line, we speculate introducing NKG2C into chimeric antigen receptors in NK cells might be a potential approach in future viral immunotherapy for emerging viruses. In this contribution, we will briefly discuss the current status and future perspective of NK cells, which provide to successfully exploit NK cell-mediated antiviral activity that may offer important new tools in COVID-19 treatment.
Project description:COVID-19 pandemic is spreading rapidly worldwide, and drug selection can affect the morbidity and mortality of the disease positively or negatively. Alpha-lipoic acid (ALA) is a potent antioxidant and reduces oxidative stress and inhibits activation of nuclear factor-kappa B (NF-kB). ALA reduces ADAM17 activity and ACE2 upregulation. ALA is known to have antiviral effects against some viruses. ALA may show antiviral effect by reducing NF-kB activation and alleviating redox reactions. ALA increases the intracellular glutathione strengthens the human host defense. ALA activates ATP dependent K+ channels (Na+, K+-ATPase). Increased K+ in the cell raises the intracellular pH. As the intracellular pH increases, the entry of the virus into the cell decreases. ALA can increase human host defense against SARS-CoV-2 by increasing intracellular pH. ALA treatment increases antioxidant levels and reduces oxidative stress. Thus, ALA may strengthen the human host defense against SARS-CoV-2 and can play a vital role in the treatment of patients with critically ill COVID-19. It can prevent cell damage by decreasing lactate production in patients with COVID-19. Using ALA with insulin in patients with diabetes can show a synergistic effect against SARS-CoV-2. We think ALA treatment will be beneficial against COVID-19 in patients with diabetes.
Project description:The successful control of coronavirus disease 2019 (COVID-19) pandemic is not only relying on the development of vaccines, but also depending on the storage, transportation, and administration of vaccines. Ideally, nucleic acid vaccine should be directly delivered to proper immune cells or tissue (such as lymph nodes). However, current developed vaccines are normally treated through intramuscular injection, where immune cells do not normally reside. Meanwhile, current nucleic acid vaccines must be stored in a frozen state that may hinder their application in developing countries. Here, we report a separable microneedle (SMN) patch to deliver polymer encapsulated spike (or nucleocapsid) protein encoding DNA vaccines and immune adjuvant for efficient immunization. Compared with intramuscular injection, SMN patch can deliver nanovaccines into intradermal for inducing potent and durable adaptive immunity. IFN-γ+CD4/8+ and IL-2+CD4/8+ T cells or virus specific IgG are significantly increased after vaccination. Moreover, in vivo results show the SMN patches can be stored at room temperature for at least 30 days without decreases in immune responses. These features of nanovaccines-laden SMN patch are important for developing advanced COVID-19 vaccines with global accessibility.
Project description:To evaluate the joint impact of childhood vaccination rates and school masking policies on community transmission and severe outcomes due to COVID-19, we utilized a stochastic, agent-based simulation of North Carolina to test 24 health policy scenarios. In these scenarios, we varied the childhood (ages 5 to 19) vaccination rate relative to the adult's (ages 20 to 64) vaccination rate and the masking relaxation policies in schools. We measured the overall incidence of disease, COVID-19-related hospitalization, and mortality from 2021 July 1 to 2023 July 1. Our simulation estimates that removing all masks in schools in January 2022 could lead to a 31% to 45%, 23% to 35%, and 13% to 19% increase in cumulative infections for ages 5 to 9, 10 to 19, and the total population, respectively, depending on the childhood vaccination rate. Additionally, achieving a childhood vaccine uptake rate of 50% of adults could lead to a 31% to 39% reduction in peak hospitalizations overall masking scenarios compared with not vaccinating this group. Finally, our simulation estimates that increasing vaccination uptake for the entire eligible population can reduce peak hospitalizations in 2022 by an average of 83% and 87% across all masking scenarios compared to the scenarios where no children are vaccinated. Our simulation suggests that high vaccination uptake among both children and adults is necessary to mitigate the increase in infections from mask removal in schools and workplaces.