Project description:PurposeThe great efficacy of EGFR tyrosine kinase inhibitors (EGFR-TKIs) has been identified in patients with advanced non-small-cell lung cancer (NSCLC) who harbor EGFR mutations. However, it has not yet been established in postoperative adjuvant therapy.Patients and methodsTo compare the prognosis and toxicity of EGFR-TKI-based adjuvant therapy and non-EGFR-TKI-based adjuvant therapy in resected NSCLC with sensitive EGFR mutations, we performed this meta-analysis of all eligible randomized controlled trials (RCTs).ResultsA comprehensive literature search of electronic databases (from inception to December 31, 2017) was performed. Additionally, abstracts presented at the American Society of Clinical Oncology conferences and World Conference on Lung Cancer held between January 2000 and November 2017 were searched to identify relevant trials. Disease-free survival (DFS), overall survival (OS), and grade 3 or 4 toxicities were analyzed. Five RCTs were selected, and 560 participants were included. This meta-analysis demonstrated that EGFR-TKI-based adjuvant therapy was associated with better DFS compared with non-EGFR-TKI-based therapy (HR =0.52, 95% CI 0.34-0.78, P=0.002). Pooled estimate has showed the trend of superiority of EGFR-TKI-based therapy in the aspect of OS (HR =0.65, 95% CI 0.22-1.91, P=0.43); however, the difference was not significant. The incidence rate of grade 3-4 toxicities of EGFR-TKI-based regimens was significantly higher for rash (OR =10.17, 95% CI 2.37-43.63, P=0.002) but lower for vomiting (OR =0.08, 95% CI 0.01-0.61, P=0.02).ConclusionEGFR-TKI-based therapy was associated with better DFS compared with non-EGFR-TKI-based adjuvant therapy in patients with NSCLC harboring EGFR mutations. A trend was found that EGFR-TKI-based regimen improved the OS, though the difference was not significant. Although more OS data are needed, EGFR-TKI-based treatment has the potential to be an alternative of adjuvant therapy for NSCLC with a sensitive EGFR mutation.
Project description:BackgroundADJUVANT-CTONG1104 reported a favorable survival outcome from adjuvant gefitinib treatment over chemotherapy in EGFR-mutant non-small cell lung cancer (NSCLC) patients. However, heterogeneous benefit from EGFR-TKIs and chemotherapy demands further biomarker exploration for patient selection. Previously, we identified certain TCR sequences with predictive value for adjuvant therapies from the CTONG1104 trial and found a relationship between the TCR repertoire and genetic variations. It remains unknown which TCR sequences could further enhance the prediction for only adjuvant EGFR-TKI.MethodsIn this study, 57 tumor and 12 tumor-adjacent samples, respectively, from gefitinib-treated patients in the CTONG1104 were collected for TCR β gene sequencing. We attempted to constitute a predictive model for prognosis and favorable adjuvant EGFR-TKI outcome for patients with early-stage NSCLC and EGFR mutations.ResultsThe TCR rearrangements demonstrated significant prediction for overall survival (OS). A combined model of high frequent Vβ7-3Jβ2-5 and Vβ24-1Jβ2-1 with lower frequent Vβ5-6Jβ2-7 and Vβ28Jβ2-2 constituted the best value for predicting OS (P < 0.001; Hazard Ratio [HR] = 9.65, 95% confidence interval [CI]: 2.27 to 41.12) or DFS (P = 0.02; HR = 2.61, 95% CI: 1.13 to 6.03). In Cox regression analyses, when multiple clinical data were included, the risk score remained an independent prognostic predictor for OS (P = 0.003; HR = 9.49; 95% CI: 2.21 to 40.92) and DFS (P = 0.015; HR = 3.13; 95% CI: 1.25 to 7.87).ConclusionsIn this study, a predictive model was constituted with specific TCR sequences for prognosis prediction and gefitinib benefit in the ADJUVANT-CTONG1104 trial. We provide a potential immune biomarker for EGFR-mutant NSCLC patients who might benefit from an adjuvant EGFR-TKI.
Project description:BackgroundCisplatin-based chemotherapy was previously considered as the standard adjuvant therapy for improved overall survival (OS) in patients with non-small cell lung cancer (NSCLC) after surgery. However, the benefit was limited due to high risks of recurrence and adverse events. In the present study, the efficacy of adjuvant epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) for EGFR-mutant patients after surgery was investigated using the latest updated data.MethodsThis meta-analysis included a comprehensive range of relevant studies identified from database searches. Disease-free survival (DFS) and OS with hazard ratios (HRs) were calculated using random-effect or fixed-effect models. Subgroup analysis was also performed.ResultsA total of seven randomized clinical trials were included in the meta-analysis and involved 1,283 NSCLC patients harboring EGFR mutations. In resected EGFR-mutant NSCLC patients, adjuvant EGFR-TKIs were significantly better than chemotherapy in terms of DFS (HR: 0.41; 95%CI: 0.24-0.70, P = 0.001), without showing any benefit in OS (HR: 0.72; 95%CI: 0.37-1.41, P = 0.336). No significant difference in DFS was observed between patients with EGFR exon 19 deletion and those with L858R mutation. Resected EGFR-mutant NSCLC patients treated with osimertinib experienced improved DFS and a lower risk of brain recurrence than those treated with gefitinib or erlotinib. Adjuvant EGFR-TKIs reduced the risk of bone and lung relapse, without decreasing the risk of local recurrence and liver relapse.ConclusionThis meta-analysis shows that adjuvant EGFR-TKI therapy could significantly prolong DFS in patients with resected EGFR-mutant NSCLC. Treatment with osimertinib showed improved DFS with a lower risk of brain recurrence than treatment with gefitinib or erlotinib for resected disease.
Project description:IntroductionThe epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor osimertinib was recently approved for resected EGFR-mutant stages IB-IIIA non-small cell lung cancer due to improved disease-free survival (DFS) in this population compared with placebo. This study aimed to evaluate the cost-effectiveness (CE) of this strategy.Materials and methodsWe constructed a Markov model using post-resection health state transitions with digitized DFS data from the ADAURA trial to compare cost and quality-adjusted life years (QALYs) of 3 years of adjuvant osimertinib versus placebo over a 10-year time horizon. An overall survival (OS) benefit of 5% was assumed. Costs and utility values were derived from Medicare reimbursement data and literature. A CE threshold of 3 times the gross domestic product per capita was used. Sensitivity analyses were performed.ResultsThe incremental cost-effectiveness ratio for adjuvant osimertinib was $317 119 per QALY-gained versus placebo. Initial costs of osimertinib are higher in years 1-3. Costs due to progressive disease (PD) are higher in the placebo group through the first 6.5 years. Average pre-PD, post-PD, and total costs were $2388, $379 047, and $502 937, respectively, in the placebo group, and $505 775, $255 638, and $800 697, respectively, in the osimertinib group. Sensitivity analysis of OS gains reaches CE with an hazard ratio (HR) of 0.70-0.75 benefit of osimertinib over placebo. A 50% discount to osimertinib drug cost yielded an ICER of $115 419.ConclusionsThree-years of adjuvant osimertinib is CE if one is willing to pay $317 119 more per QALY-gained. Considerable OS benefit over placebo or other economic interventions will be needed to reach CE.
Project description:BackgroundThe efficacy of neoadjuvant treatment with epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) monotherapy in patients with stage III-N2 EGFR-mutant remains unsatisfactory. This study explored the potential benefits of combining first-generation EGFR-TKI with chemotherapy as a neoadjuvant treatment for patients with stage III-N2 EGFR-mutant non-small cell lung cancer (NSCLC).Patients and methodsThe medical records of patients with III-N2 EGFR-mutant NSCLC who received neoadjuvant therapy with EGFR-TKI at Shanghai Chest Hospital from October 2011 to October 2022 were retrospectively reviewed. Patients with stage III-N2 EGFR-mutant NSCLC who received first-generation TKI combined with chemotherapy as neoadjuvant treatment were included in the combination group, and those who received EGFR-TKI monotherapy were included in the monotherapy group. The study assessed the objective response rate (ORR) according to Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, disease-free survival (DFS), overall survival (OS), downstaging rates of pathologic lymph nodes (from stage N2 to N1 or N0), major pathologic response (MPR) rate, pathological complete response (PCR) rate, and safety.ResultsA total of 74 631 patients with EGFR-mutant NSCLC were screened, and 60 patients were included, 7 of whom did not undergo surgery after neoadjuvant targeted therapy. Of the remaining 53 patients, 15 received first-generation EGFR-TKI combined with chemotherapy as neoadjuvant treatment, and 38 received EGFR-TKI monotherapy. The median follow-up time was 44.12 months. The ORR was 50.0% (9/18) in the combination group and 40.5% (17/42) in the monotherapy group (P = .495). The MPR rate was 20.0% (3/15) and 10.5% (4/38) in the combination and monotherapy groups, respectively (P = .359). No patients achieved PCR in the combination group, while 3 (7.89%) attained PCR in the monotherapy group. The 2 groups did not differ in N2 downstaging rate (P = .459). The median DFS was not reached in the combination group, while it was 23.6 months (95% CI: 8.16-39.02) in the monotherapy group (P = .832). Adverse events observed were consistent with those commonly associated with the 2 treatments.ConclusionCombination therapy with first-generation EGFR-TKI and chemotherapy could be considered a neoadjuvant treatment option for patients with stage III-N2 EGFR-mutant NSCLC, exhibiting acceptable toxicity. However, regarding short-term efficacy, combination therapy did not demonstrate superiority over EGFR-TKI monotherapy. Long-term follow-up is warranted for a more accurate assessment of the DFS and OS.