Project description:Background and aimsThe prognosis of hepatocellular carcinoma (HCC) is extremely poor; therefore, there is an urgent need for novel prognostic molecular biomarkers of HCC. The current investigation utilized circular (circ)RNA-associated competing endogenous (ce)RNAs analysis in order to identify significant prognostic biomarkers of HCC.MethodsCircRNAs and mRNAs that were differentially expressed between normal and HCC tissues were identified. Their respective functions were predicted with Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. A nomogram was used for model verification.ResultsA ceRNA network composed of differentially expressed circRNAs and mRNAs was constructed. Significant hub nodes in the ceRNA network were hsa_circ_0004662, hsa_circ_0005735, hsa_circ_0006990, hsa_circ_0018403 and hsa_circ_0100609. By using this information, a prognostic risk assessment tool was developed based on the expressions of seven genes (PLOD2, TARS, RNF19B, CCT2, RAN, C5orf30 and MCM10). Furthermore, multivariate Cox regression analysis revealed risk and T-stage parameters as independent prognostic factors. The nomograms that were constructed from risk and T-stage groups were used to further assess the prediction of HCC patient survival rates. The nomogram, which consisted of risk and T-stage scores assessment models, was found to be an independent factor for predicting prognosis of HCC.ConclusionsFive circRNAs, including hsa_circ_0004662, hsa_circ_0005735, hsa_circ_0006990, hsa_circ_0018403 and hsa_circ_0100609, that may play key roles in the progression of HCC were identified. Seven gene signatures were identified, which were associated with the aforementioned circRNAs, including PLOD2, TARS, RNF19B, CCT2, RAN, C5orf30 and MCM10, all of which were significant genes involved in the pathophysiology of HCC. These genes may be used as a prognosticating tool in HCC patients.
Project description:Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and a leading cause of cancer-related deaths worldwide. However, current diagnostic tools are often invasive and technically limited. In the last decade, non-invasive liquid biopsies have transformed the field of clinical oncology, showcasing the potential of various liquid-biopsy derived analytes, including extracellular vesicles (EVs), to diagnose and monitor HCC progression and metastatic spreading, serving as promising novel biomarkers. A prospective single-center cohort study including 37 HCC patients and 20 patients with non-malignant liver disease (NMLD), as a control group, was conducted. Serum EVs of both groups were analyzed before and after liver surgery. The study utilized microbead-based magnetic particle sorting and flow cytometry to detect 37 characteristic surface proteins of EVs. Furthermore, HCC patients who experienced tumor recurrence (R-HCC) within 12 months after surgery were compared to HCC patients without recurrence (NR-HCC). EVs of R-HCC patients (n = 12/20) showed significantly lower levels of CD31 compared to EVs of NR-HCC patients (p = 0.0033). EVs of NMLD-group showed significantly higher expressions of CD41b than EVs of HCC group (p = 0.0286). The study determined significant short-term changes in CD19 dynamics in EVs of the NMLD-group, with preoperative values being significantly higher than postoperative values (p = 0.0065). This finding of our pilot study suggests EVs could play a role as potential targets for the development of diagnostic and therapeutic approaches for the early and non-invasive detection of HCC recurrence. Further, more in-depth analysis of the specific EV markers are needed to corroborate their potential role as diagnostic and therapeutic targets for HCC.
Project description:Nonalcoholic steatohepatitis (NASH) is rising in prevalence in the United States and is a growing cause of hepatocellular carcinomas (HCCs). Site-specific glycan heterogeneity on glycoproteins has been shown as a potential diagnostic biomarker for HCC. Herein, we have performed a comprehensive screening of site-specific N-glycopeptides in serum haptoglobin (Hp), a reporter molecule for aberrant glycosylation in HCC, to characterize glycopeptide markers for NASH-related HCCs. In total, 70 NASH patients (22 early HCC, 15 advanced HCC, and 33 cirrhosis cases) were analyzed, with Hp purified from 20 μL of serum in each patient, and 140 sets of mass spectrometry (MS) data were collected using liquid chromatography coupled with electron-transfer high-energy collisional dissociation tandem MS (LC-EThcD-MS/MS) for quantitative analysis on a novel software platform, Byos. Differential quantitation analysis revealed that five N-glycopeptides at sites N184 and N241 were significantly elevated during the progression from NASH cirrhosis to HCC (p < 0.05). Receiver operating characteristic (ROC) curve analysis demonstrated that the N-glycopeptides at sites N184 and N241 bearing a monofucosylated triantennary glycan A3G3F1S3 had the best diagnostic performance in detection of early NASH HCC, area under the curve (AUC) = 0.733 and 0.775, respectively, whereas α-fetoprotein (AFP) had an AUC of 0.692. When combined with AFP, the two panels improved the sensitivity for early NASH HCC from 59% (AFP alone) to 73% while maintaining a specificity of 70%, based on the optimal cutoff. Two-dimensional (2-D) scatter plots of the AFP value and N-glycopeptides showed that these N-glycopeptide markers detected 58% of AFP-negative HCC patients as distinct from cirrhosis. These site-specific N-glycopeptides could serve as potential markers for early detection of HCC in patients with NASH-related cirrhosis.
Project description:Hepatocellular carcinoma (HCC) is the 5th most frequently diagnosed cancer in the world, according to the World Health Organization. The incidence of HCC is between 3/100000 and 78.1/100000, with a high incidence reported in areas with viral hepatitis B and hepatitis C, thus affecting Asia and Africa predominantly. Several international clinical guidelines address HCC diagnosis and are structured according to the geographical area involved. All of these clinical guidelines, however, share a foundation of diagnosis by ultrasound surveillance and contrast imaging techniques, particularly computed tomography, magnetic resonance imaging, and sometimes contrast-enhanced ultrasound. The primary objective of this review was to systematically summarize the recent published studies on the clinical utility of serum biomarkers in the early diagnosis of HCC and for the prognosis of this disease.
Project description:BackgroundHepatocellular carcinoma (HCC) continues to be a leading challenge in modern oncology. Early detection via blood-based screening tests has the potential to cause a stage-shift at diagnosis and improve clinical outcomes. Tumor associated autoantibodies (TA-AAbs) have previously shown the ability to distinguish HCC from patients with high-risk liver disease. This research aimed to further show the utility of TA-AAbs as biomarkers of HCC and assess their use in combination with Alpha-fetoprotein (AFP) for detection of HCC across multiple tumor stages.MethodsLevels of circulating G class antibodies to 44 recombinant tumor associated antigens and circulating AFP were measured in the serum of patients with HCC, non-cancerous chronic liver disease (NCCLD) and healthy controls via enzyme-linked immunosorbent assay (ELISA). TA-AAb cut-offs were set at the highest Youden's J statistic at a specificity ≥95.00%. Panels of TA-AAbs were formed using net reclassification improvement. AFP was assessed at a cut-off of 200 ng/ml.ResultsSensitivities ranged from 1.01% to 12.24% at specificities of 95.96% to 100.00% for single TA-AAbs. An ELISA test measuring a panel of 10 of these TA-AAbs achieved a combined sensitivity of 36.73% at a specificity of 89.89% when distinguishing HCC from NCCLD controls. At a cut-off of 200 ng/ml, AFP achieved a sensitivity of 31.63% at a specificity of 100.00% in the same cohort. Combination of the TA-AAb panel with AFP significantly increased the sensitivity for stage one (40.00%) and two (55.00%) HCC over the TA-AAb panel or AFP alone.ConclusionsA panel of TA-AAbs in combination with AFP could be clinically relevant as a replacement for measuring levels of AFP alone in surveillance and diagnosis strategies. The increased early stage sensitivity could lead to a stage shift with positive prognostic outcomes.
Project description:BackgroundAberrant methylation of DNA is a key driver of hepatocellular carcinoma (HCC). In this study, we sought to integrate four cohorts profile datasets to identify such abnormally methylated genes and pathways associated with HCC.MethodsTo this end, we downloaded microarray datasets examining gene expression (GSE84402, GSE46408) and gene methylation (GSE73003, GSE57956) from the GEO database. Abnormally methylated differentially expressed genes (DEGs) were sorted and pathways were analyzed. The String database was then used to perform enrichment and functional analysis of identified pathways and genes. Cytoscape software was used to create a protein-protein interaction network, and MCODE was used for module analysis. Finally, overall survival analysis of hub genes was performed by the OncoLnc online tool.ResultsIn total, we identified 19 hypomethylated highly expressed genes and 14 hypermethylated lowly expressed genes at the screening step, and finally found six mostly changed hub genes including MAD2L1, CDC20, CCNB1, CCND1, AR and ESR1. Pathway analysis showed that aberrantly methylated-DEGs mainly associated with the cell cycle process, p53 signaling, and MAPK signaling in HCC. After validation in TCGA database, the methylation and expression status of hub genes was significantly altered and same with our results. Patients with high expression of MAD2L1, CDC20 and CCNB1 and low expression of CCND1, AR, and ESR1 was associated with shorter overall survival.ConclusionsTaken together, we have identified novel aberrantly methylated genes and pathways linked to HCC, potentially offering novel insights into the molecular mechanisms governing HCC progression and serving as novel biomarkers for precision diagnosis and disease treatment.
Project description:New biomarkers of hepatocellular carcinoma (HCC) have been identified using advanced genomic, proteomic, and metabolomics technologies. These are being developed not only for use in diagnosis of HCC, but also in prediction of patient and treatment outcomes and individualization of therapy. Some HCC biomarkers are currently used in surveillance to detect early stage HCCs and reduce mortality. Further studies are needed to determine whether the recently identified HCC biomarkers can be used in clinical practice; most are only in phase 1 or 2 studies. The diagnostic and predictive abilities of biomarkers are limited by the heterogeneous nature of HCCs; there is no perfect single biomarker of this tumor. To improve performance, combinations of biomarkers (panels), or combinations of biomarkers and clinical parameters or laboratory test results, might be required. We describe recently discovered biomarkers of HCC and discuss challenges to their development and application.
Project description:Recent studies have shown that circulating microRNAs are a potential biomarker in various types of malignancies. The aim of this study was to investigate the feasibility of using serum exosomal microRNAs as novel serological biomarkers for hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). We measured the serum exosomal microRNAs and serum circulating microRNAs in patients with CHB (n=20), liver cirrhosis (LC) (n=20) and HCC (n=20). Serum exosomal microRNA was extracted from 500 μl of serum using an Exosome RNA Isolation kit. The expression levels of microRNAs were quantified by real-time PCR. The expression levels of selected microRNAs were normalized to Caenorhabditis elegans microRNA (Cel-miR-39). The serum levels of exosomal miR-18a, miR-221, miR-222 and miR-224 were significantly higher in patients with HCC than those with CHB or LC (P<0.05). Further, the serum levels of exosomal miR-101, miR-106b, miR-122 and miR-195 were lower in patients with HCC than in patients with CHB (P=0.014, P<0.001, P<0.001 and P<0.001, respectively). There was no significant difference in the levels of miR-21 and miR-93 among the three groups. Additionally, the serum levels of circulating microRNAs showed a smaller difference between HCC and either CHB or LC. This study suggests that serum exosomal microRNAs may be used as novel serological biomarkers for HCC.