Project description:Objective. Colchicine is an alkaloid that is used to alleviate acute gout and to prevent acute attacks of familial Mediterranean fever (FMF). However, it is not beneficial when given during the occurrence of an acute episode of FMF. It is believed that colchicine exerts its anti-inflammatory effect through direct interaction with microtubules. We aim to study the molecular basis of colchicine action by analysing the effect of this drug on global gene expression of HUVEC (human umbilical vein endothelial cell line) cells. Methods. HUVEC cells were exposed to various concentrations of colchicine and were harvested at different time points. Ribonucleic acid was extracted, amplified, reverse transcribed and hybridized to complementary deoxyribonucleic acid microarrrays containing more than 40,000 probes to human expressed sequence tags. This approach enabled us to have a global look at the transcriptional response induced by colchicine treatment. Results. Colchicine changed the expression of many genes in HUVEC cells following exposure to a concentration of 100 ng/ml or higher. Following short exposure (30 or 120 min), colchicine affected genes known to be involved in the cell cycle and its regulation. However, change in expression of genes involved in neutrophil migration or other inflammatory processes were observed mainly after 12 to 24 h. Conclusions. The anti-inflammatory effect of colchicine may be mediated not only through direct interaction with microtubules but also through changes at the transcriptional level. This latter effect apparently requires a higher concentration and a longer time to occur. This can explain the observation that colchicine does not have an immediate effect when given during an acute attack of FMF. A dose response design type examines the relationship between the size of the administered dose and the extent of the response of the organism(s). Keywords: dose_response_design
Project description:Objective. Colchicine is an alkaloid that is used to alleviate acute gout and to prevent acute attacks of familial Mediterranean fever (FMF). However, it is not beneficial when given during the occurrence of an acute episode of FMF. It is believed that colchicine exerts its anti-inflammatory effect through direct interaction with microtubules. We aim to study the molecular basis of colchicine action by analysing the effect of this drug on global gene expression of HUVEC (human umbilical vein endothelial cell line) cells. Methods. HUVEC cells were exposed to various concentrations of colchicine and were harvested at different time points. Ribonucleic acid was extracted, amplified, reverse transcribed and hybridized to complementary deoxyribonucleic acid microarrrays containing more than 40,000 probes to human expressed sequence tags. This approach enabled us to have a global look at the transcriptional response induced by colchicine treatment. Results. Colchicine changed the expression of many genes in HUVEC cells following exposure to a concentration of 100 ng/ml or higher. Following short exposure (30 or 120 min), colchicine affected genes known to be involved in the cell cycle and its regulation. However, change in expression of genes involved in neutrophil migration or other inflammatory processes were observed mainly after 12 to 24 h. Conclusions. The anti-inflammatory effect of colchicine may be mediated not only through direct interaction with microtubules but also through changes at the transcriptional level. This latter effect apparently requires a higher concentration and a longer time to occur. This can explain the observation that colchicine does not have an immediate effect when given during an acute attack of FMF. A dose response design type examines the relationship between the size of the administered dose and the extent of the response of the organism(s). Using regression correlation
Project description:Purpose of reviewPatients on disease-modifying anti-rheumatic drugs (DMARDs) remain concerned about potential risks of severe COVID-19 outcomes. Meanwhile, several DMARDs have been proposed as COVID-19 therapies.Recent findingsIn patients with autoimmune diseases, baseline glucocorticoid use is associated with severe COVID-19. While classes of DMARDs (e.g., conventional synthetic, targeted synthetic, and biologic) do not appear to be associated with higher risk, specific medications such as rituximab and sulfasalazine may be associated. Randomized clinical trials (RCTs) show that glucocorticoids reduce mortality in severe COVID-19. RCTs suggest other agents, such as baricitinib, may improve COVID-19 outcomes in certain populations. Baseline glucocorticoid use raises the risk of severe COVID-19 in patients with autoimmune diseases, but glucocorticoids are an effective treatment for those with severe COVID-19. Further research is needed to inform DMARD management in autoimmune disease patients during the pandemic and the role of DMARDs in COVID-19 treatment.
Project description:The search for effective COVID-19 management strategies continues to evolve. Current understanding of SARS-CoV-2 mechanisms suggests a central role for exaggerated activation of the innate immune system as an important contributor to COVID-19 adverse outcomes. The actions of colchicine, one of the oldest anti-inflammatory therapeutics, target multiple mechanisms associated with COVID-19 excessive inflammation. While many COVID-19 trials have sought to manipulate SARS-CoV-2 or dampen the inflammatory response once patients are hospitalised, few examine therapeutics to prevent the need for hospitalisation. Colchicine is easily administered, generally well tolerated and inexpensive, and holds particular promise to reduce the risk of hospitalisation and mortality due to COVID-19 in the outpatient setting. Successful outpatient treatment of COVID-19 could greatly reduce morbidity, mortality and the demand for rare or expensive care resources (front-line healthcare workers, hospital beds, ventilators, biological therapies), to the benefit of both resource-replete and resource-poor regions.
Project description:SARS-CoV-2 is a betacoronavirus causing severe inflammatory pneumonia, so that excessive inflammation is considered a risk factor for the disease. According to reports, cytokine storm is strongly responsible for death in such patients. Some of the consequences of severe inflammation and cytokine storms include acute respiratory distress syndrome, acute lung injury, and multiple organ dysfunction syndromes. Phylogenetic findings show more similarity of the SARS-CoV-2 virus with bat coronaviruses, and less with SARS-CoV. Quercetin is a carbohydrate-free flavonoid that is the most abundant flavonoid in vegetables and fruits and has been the most studied to determine the biological effects of flavonoids. Inflammasomes are cytosolic multi-protein complexes assembling in response to cytosolic PAMP and DAMPs, whose function is to generate active forms of cytokines IL-1β and IL-18. Activation or inhibition of the NLRP3 inflammasome is affected by regulators such as TXNIP, SIRT1 and NRF2. Quercetin suppresses the NLRP3 inflammasome by affecting these regulators. Quercetin, as an anti-inflammatory, antioxidant, analgesic and inflammatory compound, is probably a potential treatment for severe inflammation and one of the main life-threatening conditions in patients with COVID-19.
Project description:The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed the world at a pandemic risk. Coronavirus-19 disease (COVID-19) is an infectious disease caused by SARS-CoV-2, which causes pneumonia, requires intensive care unit hospitalization in about 10% of cases and can lead to a fatal outcome. Several efforts are currently made to find a treatment for COVID-19 patients. So far, several anti-viral and immunosuppressive or immunomodulating drugs have demonstrated some efficacy on COVID-19 both in vitro and in animal models as well as in cases series. In COVID-19 patients a pro-inflammatory status with high levels of interleukin (IL)-1B, IL-1 receptor (R)A and tumor necrosis factor (TNF)-α has been demonstrated. Moreover, high levels of IL-6 and TNF-α have been observed in patients requiring intensive-care-unit hospitalization. This provided rationale for the use of anti-rheumatic drugs as potential treatments for this severe viral infection. Other agents, such as hydroxychloroquine and chloroquine might have a direct anti-viral effect. The anti-viral aspect of immunosuppressants towards a variety of viruses has been known since long time and it is herein discussed in the view of searching for a potential treatment for SARS-CoV-2 infection.