Project description:COVID-19 is spreading globally with the angiotensin converting enzyme (ACE)-2 serving as the entry point of SARS-CoV-2 virus. This raised concerns how ACE2 and the Renin-Angiotensin (Ang)-System (RAS) are to be dealt with given their roles in hypertension and their involvement in COVID-19's morbidity and mortality. Specifically, increased ACE2 expression in response to treatment with ACE inhibitors (ACEi) and Ang II receptor blockers (ARBs) might theoretically increase COVID-19 risk by increasing SARS-CoV-2 binding sites. However, ACE2 is part of the protective counter-regulatory ACE2-Ang1-7-MasR axis, which opposes the classical ACE-AngII-AT1R regulatory axis. We used Gitelman's and Bartter's syndromes (GS/BS) patients, rare genetic tubulopathies that have endogenously increased levels of ACE2, to explore these issues. Specifically, 128 genetically confirmed GS/BS patients, living in Lombardia, Emilia Romagna and Veneto, the Northern Italy hot spots for COVID-19, were surveyed via telephone survey regarding COVID-19. The survey found no COVID-19 infection and absence of COVID-19 symptoms in any patient. Comparison analysis with the prevalence of COVID-19 in those regions showed statistical significance (p < 0.01). The results of the study strongly suggest that increased ACE2 does not increase risk of COVID-19 and that ACEi and ARBs by blocking excessive AT1R-mediated Ang II activation might favor the increase of ACE2-derived Ang 1-7. GS/BS patients' increased ACE2 and Ang 1-7 levels and their characteristic chronic metabolic alkalosis suggest a mechanism similar to that of chloroquine/hydroxychloroquine effect on ACE2 glycosylation alteration with resulting SARS-COV-2 binding inhibition and blockage/inhibition of viral entry. Studies from our laboratory are ongoing to explore GS/BS ACE2 glycosylation and other potential beneficial effects of BS/GS. Importantly, the absence of frank COVID-19 or of COVID-19 symptoms in the BS/GS patients cohort, given no direct ascertainment of COVID-19 status, suggest that elevated ACE2 levels as found in GS/BS patients at a minimum render COVID-19 infection asymptomatic and thus that COVID-19 symptoms are driven by ACE2 levels.
Project description:BackgroundGitelman's and Bartter's syndromes (GS/BS) are rare genetic tubulopathies characterized by electrolyte imbalance and activation of the renin-angiotensin-aldosterone system (RAAS). These syndromes have intriguing biochemical and hormonal abnormalities that lead them to be protected from hypertension and cardiovascular and renal remodeling.SummaryIn this review, we explore the biochemical/molecular mechanisms induced by the activation of the RAAS and its counterregulatory arm which is particularly activated in GS/BS patients, in the context of blood pressure regulation. In addition, we report our findings in the context of the COVID-19 pandemic where we observed GS/BS subjects being protected from infection.Key messagesThe intracellular pathways induced by Ang II, starting from induction of oxidative stress and vasoconstriction, are crucial for the progression toward cardiovascular-renal remodeling and might be useful targets in order to reduce/halt the progression of Ang II/oxidative stress-induced cardiovascular-renal morbidity in several diseases.
Project description:Gitelman's syndrome (GS) and Bartter's syndrome (BS) are rare inherited salt-losing tubulopathies whose variations in genotype do not correlate well with either clinical course or electrolyte requirements. Using GS/BS patients as nature's experiments, we found them to be a human model of endogenous Ang II antagonism with activated Renin-Angiotensin System (RAS), resulting in high Ang II levels with blunted cardiovascular effects. These patients are also characterized by increased and directly correlated levels of both Angiotensin Converting Enzyme 2 (ACE2) and Ang 1-7. Understanding the myriad of distinctive and frequently overlapping clinical presentations of GS/BS arises remains challenging. Efforts to find a treatment for COVID-19 has fueled a recent surge in interest in chloroquine/hydroxychloroquine and its effects. Of specific interest are chloroquine/hydroxychloroquine's ability to inhibit SARS-CoV infection by impairing ACE2, the SARS-CoV2 entry point, through terminal glycosylation via effects on TGN/post-Golgi pH homeostasis. Several different studies with a GS or a BS phenotype, along with a nonsyndromic form of X-linked intellectual disability linked to a mutated SLC9A7, provide additional evidence that specific gene defects can act via misregulation of TGN/post-Golgi pH homeostasis, which leads to a common mechanistic basis resulting in overlapping phenotypes. We suggest that linkage between the specific gene defects identified in GS and BS and the myriad of distinctive and frequently overlapping clinical findings may be the result of aberrant glycosylation of ACE2 driven by altered TGN/endosome system acidification caused by the metabolic alkalosis brought about by these salt-losing tubulopathies in addition to their altered intracellular calcium signaling due to a blunted second messenger induced intracellular calcium release that is, in turn, amplified by the RAS system.
Project description:Given the key role played by ClC-K chloride channels in kidney and inner ear physiology and pathology, they can be considered important targets for drug discovery. Indeed, ClC-Ka and ClC-Kb inhibition would interfere with the urine countercurrent concentration mechanism in Henle's loop, which is responsible for the reabsorption of water and electrolytes from the collecting duct, producing a diuretic and antihypertensive effect. On the other hand, ClC-K/barttin channel dysfunctions in Bartter Syndrome with or without deafness will require the pharmacological recovery of channel expression and/or activity. In these cases, a channel activator or chaperone would be appealing. Starting from a brief description of the physio-pathological role of ClC-K channels in renal function, this review aims to provide an overview of the recent progress in the discovery of ClC-K channel modulators.
Project description:Hereditary cancer syndromes, which are characterized by onset at an early age and an increased risk of developing certain tumors, are caused by germline pathogenic variants in tumor suppressor genes and are mostly inherited in an autosomal dominant manner. Therefore, hereditary cancer syndromes have been used as powerful models to identify and characterize susceptibility genes associated with cancer. Furthermore, clarification of the association between genotypes and phenotypes in one disease has provided insights into the etiology of other seemingly different diseases. Molecular genetic discoveries from the study of hereditary cancer syndrome have not only changed the methods of diagnosis and management, but have also shed light on the molecular regulatory pathways that are important in the development and treatment of sporadic tumors. The main cancer susceptibility syndromes that involve gynecologic cancers include hereditary breast and ovarian cancer syndrome as well as Lynch syndrome. However, in addition to these two hereditary cancer syndromes, there are several other hereditary syndromes associated with gynecologic cancers. In the present review, we provide an overview of the clinical features, and discuss the molecular genetics, of four rare hereditary gynecological cancer syndromes; Cowden syndrome, Peutz-Jeghers syndrome, DICER1 syndrome and rhabdoid tumor predisposition syndrome 2.
Project description:Tuberculosis (TB), a chronic infectious disease mainly caused by the tubercle bacillus Mycobacterium tuberculosis, is one of the world's deadliest diseases that has afflicted humanity since ancient times. Although the number of people falling ill with TB each year is declining, its incidence in many developing countries is still a major cause of concern. Upon invading host cells by phagocytosis, M. tuberculosis can replicate within infected cells by arresting the maturation of the phagosome whose function is to target the pathogen for elimination. Host cells have mechanisms of controlling this evasion by inducing autophagy, an elaborate cellular process that targets bacteria for progressive elimination, decreasing bacterial loads within infected cells. In addition, autophagy activation also aids in the control of inflammation, contributing to a more efficient innate immune response against M. tuberculosis. Several innovative TB therapies have been envisaged based on autophagy manipulation, with some of them revealing high potential for future clinical trials and eventual implementation in healthcare systems. Thus, this review highlights the recent advances on the innate immune response regulation by autophagy upon M. tuberculosis infection and the promising new autophagy-based therapies for TB.
Project description:Insect development requires genes to be expressed in strict spatiotemporal order. The degree of histone acetylation regulates insect development, via histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although HDAC3 is required for early embryonic development, its functions in Helicoverpa armigera remain unclear. We treated H. armigera with HDAC3 siRNA and RGFP966, a specific inhibitor, examining how HDAC3 loss-of-function affects growth and development. HDAC3 siRNA and RGFP966 treatment increased mortality at each growth-stage and altered metamorphosis, hampering pupation and causing abnormal wing development, reduced egg production, and reduced hatching rate. RNA-seq analysis identified 2,788 differentially expressed genes (≥ two-fold change; P ≤ 0.05) between siHDAC3- and siNC-treated larvae. Kr-h1, were differentially expressed in HDAC3 knockdown larvae. Pathway enrichment analysis revealed significant enrichment of genes involved in the Hippo, MAPK, and Wnt signaling pathways following HDAC3 knockdown. Histone H3K9 acetylation was increased in H. armigera after siHDAC3 treatment. In conclusion, HDAC3-knockdown dysregulated 20-hydroxyecdysone hormone-related and apoptosis-related genes in H. armigera, affecting many basic processes, including cell cycle regulation, metabolism, and signal transduction. The Result showed that HDAC3 gene can serve as a potential target for fighting against Helicoverpa armigera.
Project description:Diffuse or interstitial lung disease (DLD/ILD) comprises a diverse group of disorders that involve the pulmonary parenchyma. Its aetiology varies (which makes the diagnostic process difficult), but congenital diseases, including malformation syndromes or developmental disorders, constitute one of the causative factors. They are rare conditions, and thus their frequency is not high. However, considering the progress and increasing availability of genetic testing, detection of these rare syndromes may increase. The aim of this work is, therefore, to present the symptomatology of selected congenital syndromes with ILD, taking into account the genetic background.