Project description:IntroductionThe safety of BCG revaccination is uncertain and there is no data on its use in patients with COVID-19.MethodsCOVID-19 convalescent adults confirmed by SARS-CoV-2 RT-PCR in South-America were 1:1 randomized in the first 14 days of symptoms to BCG intradermal vaccine or placebo and evaluated for adverse events on days 7, 14, 21, and beyond 40 days.Clinical trial registrationNCT04369794.Results151 placebo and 148 BCG patients were included in the final analysis, with an average age of 40.7 years. No severe adverse event to BCG was reported. On day 7, 130 (87.8%) of the BCG recipients had local reaction, average size of 10.6 ± 6.4 mm, compared to only 2 (1.3%) placebos. Lesions gradually shrunk in size (mean 10.5 mm, 9.7 mm, and 6.8 mm at 14, 21, and beyond 40 days, respectively. The number of symptoms in any of the visits was not different between groups, and anosmia resolved earlier (25.7% vs. 37.1% at 7 days, OR = 1.70, 1.01-2.89, p = 0.035) in the BCG recipients.ConclusionThe BCG revaccination is safe in convalescent COVID-19 adults of a tuberculosis endemic region, regardless of tuberculin or IGRA test results. Local adverse events were similar though occurred earlier to that previously reported in children.
Project description:The first coronavirus disease 2019 (COVID-19) report in Brazil occurs by the end of February, and 4 months later, there was more than 1 million infected patients and 54,971 deaths. The health-care system in Brazil is universal, meaning that all inhabitants are covered by the Unified Health Care System, and 20% of Brazilian citizens are covered by private health-care insurances. In this scenario, the government adopted some actions to combat the pandemics, including guidelines for COVID-19 prevention and management, allocation of funds to support primary care, extension of medical services in primary health units, increase in the number of health-care professionals, distribution of COVID-19 tests, use of telemedicine to monitor patients with flu-like symptoms, and teleconsulting with psychiatrist and psychologists. Since the pandemic offers a unique opportunity for research and management in Brazil, a coalition initiative conducted several therapeutic trials in search of safe treatments for patients with COVID-19. Other issue in this field was the organization of health system, both in private and public organizations.
Project description:In the last two years, the coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a scientific and social challenge worldwide. Vaccines have been the most effective intervention for reducing virus transmission and disease severity. However, virus genetic variants are still circulating among vaccinated individuals with different symptomatology disease cases. Understanding the protective or disease associated mechanisms in vaccinated individuals is relevant to advance in vaccine development and implementation. To address this objective, serum protein profiles were characterized by quantitative proteomics and data analysis algorithms in four cohorts of vaccinated individuals uninfected and SARS-CoV-2 infected with asymptomatic, nonsevere and severe disease symptomatology. The results showed that immunoglobulins were the most overrepresented proteins in infected cohorts when compared to PCR-negative individuals. The immunoglobulin profile varied between different infected cohorts and correlated with protective or disease associated capacity. Overrepresented immunoglobulins in PCR-positive individuals correlated with protective response against SARS-CoV-2, other viruses, and thrombosis in asymptomatic cases. In nonsevere cases, correlates of protection against SARS-CoV-2 and HBV together with risk of myasthenia gravis and allergy and autoantibodies were observed. Patients with severe symptoms presented risk for allergy, chronic idiopathic thrombocytopenic purpura, and autoantibodies. The analysis of underrepresented immunoglobulins in PCR-positive compared to PCR-negative individuals identified vaccine-induced protective epitopes in various coronavirus proteins including the Spike receptor-binding domain RBD. Non-immunoglobulin proteins were associated with COVID-19 symptoms and biological processes. These results evidence host-associated differences in response to vaccination and the possibility of improving vaccine efficacy against SARS-CoV-2.
Project description:The SARS-CoV-2 Delta (B.1.617.2) variant is capable of infecting vaccinated persons. An open question remains as to whether deficiencies in specific vaccine-elicited immune responses result in susceptibility to vaccine breakthrough infection. We investigated 55 vaccine breakthrough infection cases (mostly Delta) in Singapore, comparing them against 86 vaccinated close contacts who did not contract infection. Vaccine breakthrough cases showed lower memory B cell frequencies against SARS-CoV-2 receptor binding domain (RBD). Compared to plasma antibodies, antibodies secreted by memory B cells retained a higher fraction of neutralizing properties against the Delta variant. Inflammatory cytokines including IL-1β and TNF were lower in vaccine breakthrough infections than primary infection of similar disease severity, underscoring the usefulness of vaccination in preventing inflammation. This report highlights the importance of memory B cells against vaccine breakthrough, and suggests that lower memory B cell levels may be a correlate of risk for Delta vaccine breakthrough infection.
Project description:Blood collected from adults pre vaccination and post vaccination to study the immune effects of COVID-19 vaccination and how they relate to antibody and T-cell responses.
Project description:Researchers have been working quickly and collaboratively for the development of vaccines against the COVID-19 virus. The effort of the scientific community in searching a vaccine for COVID-19 may be hampered by a diffused vaccine hesitancy. Two waves of data collection on representative samples of the Italian population (during the "first" and "second" phase of the Italian Covid-19 mitigation strategy) were conducted to understand citizens' perceptions and behaviors about preventive behaviors willingness to vaccine for COVID-19. Our study shows that willingness to COVID-19 vaccine is correlated to trust in research and in vaccines, which decreased between phase 1 and phase 2 of the Italian pandemic. According to the results of our study, the proportion of citizens that seem to be intentioned to get the Covid-19 vaccine is probably too small to effectively stop the spreading of the disease. This requires to foster a climate of respectful mutual trust between science and society, where scientific knowledge is not only preached but also cultivated and sustained thanks to the emphatic understanding of citizens worries, needs of reassurance and health expectations.
Project description:BackgroundPopulation-based data from the United States on the effectiveness of the three coronavirus disease 2019 (Covid-19) vaccines currently authorized by the Food and Drug Administration are limited. Whether declines in effectiveness are due to waning immunity, the B.1.617.2 (delta) variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or other causes is unknown.MethodsWe used data for 8,690,825 adults in New York State to assess the effectiveness of the BNT162b2, mRNA-1273, and Ad26.COV2.S vaccines against laboratory-confirmed Covid-19 and hospitalization with Covid-19 (i.e., Covid-19 diagnosed at or after admission). We compared cohorts defined according to vaccine product received, age, and month of full vaccination with age-specific unvaccinated cohorts by linking statewide testing, hospital, and vaccine registry databases. We assessed vaccine effectiveness against Covid-19 from May 1 through September 3, 2021, and against hospitalization with Covid-19 from May 1 through August 31, 2021.ResultsThere were 150,865 cases of Covid-19 and 14,477 hospitalizations with Covid-19. During the week of May 1, 2021, when the delta variant made up 1.8% of the circulating variants, the median vaccine effectiveness against Covid-19 was 91.3% (range, 84.1 to 97.0) for BNT162b2, 96.9% (range, 93.7 to 98.0) for mRNA-1273, and 86.6% (range, 77.8 to 89.7) for Ad26.COV2.S. Subsequently, effectiveness declined contemporaneously in all cohorts, from a median of 93.4% (range, 77.8 to 98.0) during the week of May 1 to a nadir of 73.5% (range, 13.8 to 90.0) around July 10, when the prevalence of the delta variant was 85.3%. By the week of August 28, when the prevalence of the delta variant was 99.6%, the effectiveness was 74.2% (range, 63.4 to 86.8). Effectiveness against hospitalization with Covid-19 among adults 18 to 64 years of age remained almost exclusively greater than 86%, with no apparent time trend. Effectiveness declined from May through August among persons 65 years of age or older who had received BNT162b2 (from 94.8 to 88.6%) or mRNA-1273 (from 97.1 to 93.7%). The effectiveness of Ad26.COV2.S was lower than that of the other vaccines, with no trend observed over time (range, 80.0 to 90.6%).ConclusionsThe effectiveness of the three vaccines against Covid-19 declined after the delta variant became predominant. The effectiveness against hospitalization remained high, with modest declines limited to BNT162b2 and mRNA-1273 recipients 65 years of age or older.
Project description:Urgent treatments, in any modality, to fight SARS-CoV-2 infections are desired by society in general, by health professionals, by Estate-leaders and, mainly, by the scientific community, because one thing is certain amidst the numerous uncertainties regarding COVID-19: knowledge is the means to discover or to produce an effective treatment against this global disease. Scientists from several areas in the world are still committed to this mission, as shown by the accelerated scientific production in the first half of 2020 with over 25,000 published articles related to the new coronavirus. Three great lines of publications related to COVID-19 were identified for building this article: The first refers to knowledge production concerning the virus and pathophysiology of COVID-19; the second regards efforts to produce vaccines against SARS-CoV-2 at a speed without precedent in the history of science; the third comprehends the attempts to find a marketed drug that can be used to treat COVID-19 by drug repurposing. In this review, the drugs that have been repurposed so far are grouped according to their chemical class. Their structures will be presented to provide better understanding of their structural similarities and possible correlations with mechanisms of actions. This can help identifying anti-SARS-CoV-2 promising therapeutic agents.
Project description:The coronavirus disease 2019 (COVID-19) is a public health emergency of international concern. The rising number of cases of this highly transmissible infection has stressed the urgent need to find a potent drug. Although repurposing of known drugs currently provides an accelerated route to approval, there is no satisfactory treatment. Polyphenols, a major class of bioactive compounds in nature, are known for their antiviral activity and pleiotropic effects. The aim of this review is to assess the effects of polyphenols on COVID-19 drug targets as well as to provide a perspective on the possibility to use polyphenols in the development of natural approaches against this viral disease.