Ontology highlight
ABSTRACT: Background
The sesquiterpene germacrene A is a direct precursor of ß-elemene that is a major component of the Chinese medicinal herb Curcuma wenyujin with prominent antitumor activity. The microbial platform for germacrene A production was previously established in Saccharomyces cerevisiae using the germacrene A synthase (LTC2) of Lactuca sativa.Results
We evaluated the performance of LTC2 (LsGAS) as well as nine other identified or putative germacrene A synthases from different sources for the production of germacrene A. AvGAS, a synthase of Anabaena variabilis, was found to be the most efficient in germacrene A production in yeast. AvGAS expression alone in S. cerevisiae CEN.PK2-1D already resulted in a substantial production of germacrene A while LTC2 expression did not. Further metabolic engineering the yeast using known strategies including overexpression of tHMGR1 and repression of squalene synthesis pathway led to an 11-fold increase in germacrene A production. Site-directed mutagenesis of AvGAS revealed that while changes of several residues located within the active site cavity severely compromised germacrene A production, substitution of Phe23 located on the lateral surface with tryptophan or valine led to a 35.2% and 21.8% increase in germacrene A production, respectively. Finally, the highest production titer of germacrene A reached 309.8 mg/L in shake-flask batch culture.Conclusions
Our study highlights the potential of applying bacterial sesquiterpene synthases with improved performance by mutagenesis engineering in producing germacrene A.
SUBMITTER: Zhang W
PROVIDER: S-EPMC7791714 | biostudies-literature | 2021 Jan
REPOSITORIES: biostudies-literature
Microbial cell factories 20210107 1
<h4>Background</h4>The sesquiterpene germacrene A is a direct precursor of ß-elemene that is a major component of the Chinese medicinal herb Curcuma wenyujin with prominent antitumor activity. The microbial platform for germacrene A production was previously established in Saccharomyces cerevisiae using the germacrene A synthase (LTC2) of Lactuca sativa.<h4>Results</h4>We evaluated the performance of LTC2 (LsGAS) as well as nine other identified or putative germacrene A synthases from different ...[more]