Project description:The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene resulting from an inversion within chromosome 2p occurs in approximately 5% of non-small cell lung cancer and is mutually exclusive with Ras and EGFR mutations. In this study, we have used a potent and selective ALK small molecule inhibitor, NPV-TAE684, to assess the oncogenic role of EML4-ALK in non-small cell lung cancer (NSCLC). We show here that TAE684 inhibits proliferation and induces cell cycle arrest, apoptosis, and tumor regression in two NSCLC models that harbor EML4-ALK fusions. TAE684 inhibits EML4-ALK activation and its downstream signaling including ERK, AKT, and STAT3. We used microarray analysis to carry out targeted pathway studies of gene expression changes in H2228 NSCLC xenograft model after TAE684 treatment and identified a gene signature of EML4-ALK inhibition. The gene signature represents 1210 known human genes, and the top biologic processes represented by these genes are cell cycle, DNA synthesis, cell proliferation, and cell death. We also compared the effect of TAE684 with PF2341066, a c-Met and ALK small molecule inhibitor currently in clinical trial in cancers harboring ALK fusions, and demonstrated that TAE684 is a much more potent inhibitor of EML4-ALK. Our data demonstrate that EML4-ALK plays an important role in the pathogenesis of a subset of NSCLC and provides insight into the mechanism of EML4-ALK inhibition by a small molecule inhibitor.
Project description:Anaplastic lymphoma kinase (ALK) gene rearrangements have been identified in lung cancer at 3-7% frequency, thus representing an important subset of genetic lesions that drive oncogenesis in this disease. Despite the availability of multiple FDA-approved small molecule inhibitors targeting ALK fusion proteins, drug resistance to ALK kinase inhibitors is a common problem in clinic. Thus, there is an unmet need to deepen the current understanding of genomic characteristics of ALK rearrangements and to develop novel therapeutic strategies that can overcome ALK inhibitor resistance. In this review, we present the genomic landscape of ALK fusions in the context of co-occurring mutations with other cancer-related genes, pointing to the central role of genetic epistasis (gene-gene interactions) in ALK-driven advanced-stage lung cancer. We discuss the possibility of targeting druggable domains within ALK fusion partners in addition to available strategies inhibiting the ALK kinase domain directly. Finally, we examine the potential of targeting ALK fusion-specific neoantigens in combination with other treatments, a strategy that could open a new avenue for the improved treatment of ALK positive lung cancer patients.
Project description:Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is the most frequently altered oncogene in Non-Small Cell Lung Cancer (NSCLC). KRAS mutant tumors constitute a heterogeneous group of diseases, different from other oncogene-derived tumors in terms of biology and response to treatment, which hinders the development of effective drugs against KRAS. Therefore, for decades, despite enormous efforts invested in the development of drugs aimed at inhibiting KRAS or its signaling pathways, KRAS was considered to be undruggable. Recently, the discovery of a new pocket under the effector binding switch II region of KRAS G12C has allowed the development of direct KRAS inhibitors such as sotorasib, the first FDA-approved drug targeting KRAS G12C, or adagrasib, initiating a new exciting era. However, treatment with targeted KRAS G12C inhibitors also leads to resistance, and understanding the possible mechanisms of resistance and which drugs could be useful to overcome it is key. Among others, KRAS G12C (ON) tricomplex inhibitors and different combination therapy strategies are being analyzed in clinical trials. Another area of interest is the potential role of co-mutations in treatment selection, particularly immunotherapy. The best first-line strategy remains to be determined and, due to the heterogeneity of KRAS, is likely to be based on combination therapies.
Project description:Recently, rearranged during transfection (RET) fusions have been identified in approximately 1% of non-small cell lung cancer (NSCLC). To know the prevalence of RET fusion genes in Korean NSCLCs, we examined the RET fusion genes in 156 surgically resected NSCLCs using a reverse transcriptase polymerase chain reaction. Two KIF5B-RET fusions and one CCDC6-RET fusion were identified. All three patients were females and never smokers with adenocarcinomas. RET fusion genes were mutually exclusive from EGFR, KRAS mutations and EML4-ALK fusion. RET fusion genes occur 1.9% (3 of 156) of surgically treated NSCLC patients in Koreans.
Project description:ALK-fusion proteins play a fundamental role in the development of about 5% of non-small cell lung cancers. Herein, we identified the compound 5067-0952 as a potent ALK inhibitor, which inhibited cell growth, induced apoptosis, and suppressed the phosphorylation of ALK, subsequently blocking its downstream signaling pathway.
Project description:Recent advances in molecular biology and the resultant identification of driver oncogenes have achieved major progress in precision medicine for non-small-cell lung cancer (NSCLC). v-Ki-ras2 Kirsten rat sarcoma viral oncogene (KRAS) is the most common driver in NSCLC, and targeting KRAS is considerably important. The recent discovery of covalent KRAS G12C inhibitors offers hope for improving the prognosis of NSCLC patients, but the development of combination therapies corresponding to tumor characteristics is still required given the vast heterogeneity of KRAS-mutated NSCLC. In this review, we summarize the current understanding of KRAS mutations regarding the involvement of malignant transformation and describe the preclinical and clinical evidence for targeting KRAS-mutated NSCLC. We also discuss the mechanisms of resistance to KRAS G12C inhibitors and possible combination treatment strategies to overcome this drug resistance.
Project description:The management of non-small cell lung cancer (NSCLC) has changed significantly with the discovery of specific drug targets. These drugs have helped transform patient care and outcomes. BRAF mutated NSCLC is now recognised as a rare form of lung cancer. Data has begun to emerge supporting the use of BRAF/MEK inhibitors that target BRAFV600E mutations in the mitogen-activated protein kinase (MAPK) pathway. Multiple phase 2 studies have been performed assessing the effectiveness of single agent BRAF inhibition and combination BRAF/MEK inhibition in pretreated and untreated patient populations. Consistently overall response rate (ORR) and progression free survival (PFS) are improved with the addition of a MEK inhibitor. A 2-cohort phase 2 study demonstrated an ORR of 33% vs. 67% and PFS of 5.5 vs. 10.2 months in those treated with single agent dabrafenib vs. dabrafenib and trametinib respectively. A similar ORR of 63% and PFS of 10.9 months was seen in a separate phase 2 study in patients treated with Dabrafenib and Trametinib in the first line setting. Immunotherapy is beginning to show promise as an active therapy in BRAF mutated NSCLC in both V600E and non-V600E subtypes; however, this requires further study and clarification. BRAFV600E mutated NSCLC treated with chemotherapy have been widely reported to be associated with worse outcomes when compared to those without a mutation. With efficacy of combination BRAF/MEK established and early evidence of immune checkpoint inhibitor activity careful consideration should be given when choosing the most appropriate therapy in this select patient cohort.
Project description:Approximately 85% of lung cancers are non–small-cell lung cancers (NSCLCs), which are often diagnosed at an advanced stage and associated with poor prognosis. Currently, there are very few therapies available for NSCLCs due to the recalcitrant nature of this cancer. Mutations that activate the small GTPase KRAS are found in 20% to 30% of NSCLCs. Here, we report that inhibition of superoxide dismutase 1 (SOD1) by the small molecule ATN-224 induced cell death in various NSCLC cells, including those harboring KRAS mutations. ATN-224–dependent SOD1 inhibition increased superoxide, which diminished enzyme activity of the antioxidant glutathione peroxidase, leading to an increase in intracellular hydrogen peroxide (H(2)O(2)) levels. We found that ATN-224–induced cell death was mediated through H(2)O(2)-dependent activation of P38 MAPK and that P38 activation led to a decrease in the antiapoptotic factor MCL1, which is often upregulated in NSCLC. Treatment with both ATN-224 and ABT-263, an inhibitor of the apoptosis regulators BCL2/BCLXL, augmented cell death. Furthermore, we demonstrate that ATN-224 reduced tumor burden in a mouse model of NSCLC. Our results indicate that antioxidant inhibition by ATN-224 has potential clinical applications as a single agent, or in combination with other drugs, for the treatment of patients with various forms of NSCLC, including KRAS-driven cancers.
Project description:Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, and can be further classified as nonsquamous carcinoma (including adenocarcinoma, which accounts for 40 % of NSCLCs) and squamous NSCLC, which makes up 30 % of NSCLC cases. The emergence of inhibitors of epidermal growth factor receptors, anaplastic lymphoma kinase, and vascular endothelial growth factors (VEGF) in the last decade has resulted in steady improvement in clinical outcomes for patients with advanced lung adenocarcinoma. However, improvements in the survival of patients with squamous NSCLC have remained elusive, presenting an urgent need for understanding and investigating therapeutically relevant molecular targets, specifically in squamous NSCLC. Although anti-VEGF therapy has been studied in squamous NSCLC, progress has been slow, in part due to issues related to pulmonary hemorrhage. In addition to these safety concerns, several phase III trials that initially included patients with squamous NSCLC failed to demonstrate improved overall survival (primary endpoint) with the addition of antiangiogenic therapy to chemotherapy compared with chemotherapy alone. Angiogenesis is an established hallmark of tumor progression and metastasis, and the role of VEGF signaling in angiogenesis is well established. However, some studies suggest that, while inhibiting VEGF signaling may be beneficial, prolonged exposure to VEGF/VEGF receptor (VEGFR) inhibitors may allow tumor cells to utilize alternative angiogenic mechanisms and become resistant. As a result, agents that target multiple angiogenic pathways simultaneously are also under evaluation. This review focuses on current and investigational antiangiogenic targets in squamous NSCLC, including VEGF/VEGFRs, fibroblast growth factor receptors, platelet-derived growth factor receptors, and angiopoietin. Additionally, clinical trials investigating VEGF- and multi-targeted antiangiogenic therapies are discussed.
Project description:Lung cancer is the leading cause of cancer-related mortality in the United States. Over the past 40 years, treatments with standard chemotherapy agents have not resulted in substantial improvements in long-term survival for patients with advanced lung cancer. Therefore, new targets have been sought, and angiogenesis is a promising target for non-small cell lung cancer (NSCLC). Bevacizumab, a monoclonal antibody targeted against the vascular endothelial growth factor, is the only antiangiogenic agent currently recommended by NCCN for the treatment of advanced NSCLC. However, several antibody-based therapies and multitargeted tyrosine kinase inhibitors are currently under investigation for the treatment of patients with NSCLC. This article summarizes the available clinical trial data on the efficacy and safety of these agents in patients with advanced lung cancer.