Unknown

Dataset Information

0

Genus-Wide Characterization of Bumblebee Genomes Provides Insights into Their Evolution and Variation in Ecological and Behavioral Traits.


ABSTRACT: Bumblebees are a diverse group of globally important pollinators in natural ecosystems and for agricultural food production. With both eusocial and solitary life-cycle phases, and some social parasite species, they are especially interesting models to understand social evolution, behavior, and ecology. Reports of many species in decline point to pathogen transmission, habitat loss, pesticide usage, and global climate change, as interconnected causes. These threats to bumblebee diversity make our reliance on a handful of well-studied species for agricultural pollination particularly precarious. To broadly sample bumblebee genomic and phenotypic diversity, we de novo sequenced and assembled the genomes of 17 species, representing all 15 subgenera, producing the first genus-wide quantification of genetic and genomic variation potentially underlying key ecological and behavioral traits. The species phylogeny resolves subgenera relationships, whereas incomplete lineage sorting likely drives high levels of gene tree discordance. Five chromosome-level assemblies show a stable 18-chromosome karyotype, with major rearrangements creating 25 chromosomes in social parasites. Differential transposable element activity drives changes in genome sizes, with putative domestications of repetitive sequences influencing gene coding and regulatory potential. Dynamically evolving gene families and signatures of positive selection point to genus-wide variation in processes linked to foraging, diet and metabolism, immunity and detoxification, as well as adaptations for life at high altitudes. Our study reveals how bumblebee genes and genomes have evolved across the Bombus phylogeny and identifies variations potentially linked to key ecological and behavioral traits of these important pollinators.

SUBMITTER: Sun C 

PROVIDER: S-EPMC7826183 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genus-Wide Characterization of Bumblebee Genomes Provides Insights into Their Evolution and Variation in Ecological and Behavioral Traits.

Sun Cheng C   Huang Jiaxing J   Wang Yun Y   Zhao Xiaomeng X   Su Long L   Thomas Gregg W C GWC   Zhao Mengya M   Zhang Xingtan X   Jungreis Irwin I   Kellis Manolis M   Vicario Saverio S   Sharakhov Igor V IV   Bondarenko Semen M SM   Hasselmann Martin M   Kim Chang N CN   Paten Benedict B   Penso-Dolfin Luca L   Wang Li L   Chang Yuxiao Y   Gao Qiang Q   Ma Ling L   Ma Lina L   Zhang Zhang Z   Zhang Hongbo H   Zhang Huahao H   Ruzzante Livio L   Robertson Hugh M HM   Zhu Yihui Y   Liu Yanjie Y   Yang Huipeng H   Ding Lele L   Wang Quangui Q   Ma Dongna D   Xu Weilin W   Liang Cheng C   Itgen Michael W MW   Mee Lauren L   Cao Gang G   Zhang Ze Z   Sadd Ben M BM   Hahn Matthew W MW   Schaack Sarah S   Barribeau Seth M SM   Williams Paul H PH   Waterhouse Robert M RM   Mueller Rachel Lockridge RL  

Molecular biology and evolution 20210101 2


Bumblebees are a diverse group of globally important pollinators in natural ecosystems and for agricultural food production. With both eusocial and solitary life-cycle phases, and some social parasite species, they are especially interesting models to understand social evolution, behavior, and ecology. Reports of many species in decline point to pathogen transmission, habitat loss, pesticide usage, and global climate change, as interconnected causes. These threats to bumblebee diversity make our  ...[more]

Similar Datasets

| S-EPMC11799533 | biostudies-literature
| S-EPMC8625877 | biostudies-literature
| S-EPMC6076316 | biostudies-literature
| S-EPMC8821885 | biostudies-literature
| S-EPMC4339869 | biostudies-literature
| S-EPMC2652037 | biostudies-literature
| S-EPMC7917096 | biostudies-literature
| S-EPMC8554829 | biostudies-literature
| S-EPMC10845050 | biostudies-literature
| S-EPMC11745014 | biostudies-literature