Unknown

Dataset Information

0

Functionalization of an Alginate-Based Material by Oxidation and Reductive Amination.


ABSTRACT: This research focused on the synthesis of a functional alginate-based material via chemical modification processes with two steps: oxidation and reductive amination. In previous alginate functionalization with a target molecule such as cysteine, the starting material was purified and characterized by UV-Vis, 1H-NMR and HSQC. Additionally, the application of FT-IR techniques during each step of alginate functionalization was very useful, since new bands and spiked signals around the pyranose ring (1200-1000 cm-1) and anomeric region (1000-750 cm-1) region were identified by a second derivative. Additionally, the presence of C1-H1 of β-D-mannuronic acid residue as well as C1-H1 of α-L-guluronic acid residue was observed in the FT-IR spectra, including a band at 858 cm-1 with characteristics of the N-H moiety from cysteine. The possibility of attaching cysteine molecules to an alginate backbone by oxidation and post-reductive amination processes was confirmed through 13C-NMR in solid state; a new peak at 99.2 ppm was observed, owing to a hemiacetal group formed in oxidation alginate. Further, the peak at 31.2 ppm demonstrates the presence of carbon -CH2-SH in functionalized alginate-clear evidence that cysteine was successfully attached to the alginate backbone, with 185 μmol of thiol groups per gram polymer estimated in alginate-based material by UV-Visible. Finally, it was observed that guluronic acid residue of alginate are preferentially more affected than mannuronic acid residue in the functionalization.

SUBMITTER: Huamani-Palomino RG 

PROVIDER: S-EPMC7828833 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Functionalization of an Alginate-Based Material by Oxidation and Reductive Amination.

Huamani-Palomino Ronny G RG   Córdova Bryan M BM   Pichilingue L Elvis Renzo ER   Venâncio Tiago T   Valderrama Ana C AC  

Polymers 20210114 2


This research focused on the synthesis of a functional alginate-based material via chemical modification processes with two steps: oxidation and reductive amination. In previous alginate functionalization with a target molecule such as cysteine, the starting material was purified and characterized by UV-Vis, <sup>1</sup>H-NMR and HSQC. Additionally, the application of FT-IR techniques during each step of alginate functionalization was very useful, since new bands and spiked signals around the py  ...[more]

Similar Datasets

| S-EPMC2819055 | biostudies-literature
| S-EPMC8400508 | biostudies-literature
| S-EPMC3269127 | biostudies-literature
| S-EPMC9864054 | biostudies-literature
| S-EPMC9828492 | biostudies-literature
| S-EPMC6698183 | biostudies-literature
| S-EPMC8161228 | biostudies-literature
| S-EPMC1179207 | biostudies-other
| S-EPMC3164313 | biostudies-literature
| S-EPMC9832504 | biostudies-literature