Project description:BackgroundAs a pandemic, a most-common pattern resembled organizing pneumonia (OP) has been identified by CT findings in novel coronavirus disease (COVID-19). We aimed to delineate the evolution of CT findings and outcome in OP of COVID-19.Materials and methods106 COVID-19 patients with OP based on CT findings were retrospectively included and categorized into non-severe (mild/common) and severe (severe/critical) groups. CT features including lobar distribution, presence of ground glass opacities (GGO), consolidation, linear opacities and total severity CT score were evaluated at three time intervals from symptom-onset to CT scan (day 0-7, day 8-14, day > 14). Discharge or adverse outcome (admission to ICU or death), and pulmonary sequelae (complete absorption or lesion residuals) on CT after discharge were analyzed based on the CT features at different time interval.Results79 (74.5%) patients were non-severe and 103 (97.2%) were discharged at median day 25 (range, day 8-50) after symptom-onset. Of 67 patients with revisit CT at 2-4 weeks after discharge, 20 (29.9%) had complete absorption of lesions at median day 38 (range, day 30-53) after symptom-onset. Significant differences between complete absorption and residuals groups were found in percentages of consolidation (1.5% vs. 13.8%, P = 0.010), number of involved lobe > 3 (40.0% vs. 72.5%, P = 0.030), CT score > 4 (20.0% vs. 65.0%, P = 0.010) at day 8-14.ConclusionMost OP cases had good prognosis. Approximately one-third of cases had complete absorption of lesions during 1-2 months after symptom-onset while those with increased frequency of consolidation, number of involved lobe > 3, and CT score > 4 at week 2 after symptom-onset may indicate lesion residuals on CT.
Project description:Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 primarily affects the respiratory system, but the observation of diverse neurological symptoms indicates that other organs, including the brain, may be involved. The pathophysiological mechanisms of COVID-19-associated effects on the central nervous system (CNS) have become clearer during the past two years. Nevertheless, the precise CNS-specific molecular mechanisms are still elusive and raise several questions. To further elucidate the host response at brain tissue level, we profiled single-nucleus transcriptomes and performed proteomics from olfactory mucosa, olfactory bulb, medulla oblongata and cerebellum at different timepoints of the disease in individuals who died of COVID-19 and underwent rapid autopsy.
Project description:The SARS-CoV-2 Delta (B.1.617.2) variant is capable of infecting vaccinated persons. An open question remains as to whether deficiencies in specific vaccine-elicited immune responses result in susceptibility to vaccine breakthrough infection. We investigated 55 vaccine breakthrough infection cases (mostly Delta) in Singapore, comparing them against 86 vaccinated close contacts who did not contract infection. Vaccine breakthrough cases showed lower memory B cell frequencies against SARS-CoV-2 receptor binding domain (RBD). Compared to plasma antibodies, antibodies secreted by memory B cells retained a higher fraction of neutralizing properties against the Delta variant. Inflammatory cytokines including IL-1β and TNF were lower in vaccine breakthrough infections than primary infection of similar disease severity, underscoring the usefulness of vaccination in preventing inflammation. This report highlights the importance of memory B cells against vaccine breakthrough, and suggests that lower memory B cell levels may be a correlate of risk for Delta vaccine breakthrough infection.
Project description:We derive the time-dependent probability distribution for the number of infected individuals at a given time in a stochastic Susceptible-Infected-Susceptible (SIS) epidemic model. The mean, variance, skewness, and kurtosis of the distribution are obtained as a function of time. We study the effect of noise intensity on the distribution and later derive and analyze the effect of changes in the transmission and recovery rates of the disease. Our analysis reveals that the time-dependent probability density function exists if the basic reproduction number is greater than one. It converges to the Dirac delta function on the long run (entirely concentrated on zero) as the basic reproduction number tends to one from above. The result is applied using published COVID-19 parameters and also applied to analyze the probability distribution of the aggregate number of COVID-19 cases in the United States for the period: January 22, 2020-March 23, 2021. Findings show that the distribution shifts concentration to the right until it concentrates entirely on the carrying infection capacity as the infection growth rate increases or the recovery rate reduces. The disease eradication and disease persistence thresholds are calculated.
Project description:RNA-Seq was used to study changes in gene expression in saliva samples from 266 human subjects after SARS-COV-2 infection, vaccination, or combined infection and vaccination (breakthrough). Approximately equal numbers of males and females, matched for age, were profiled after subjects tested positive for COVID-19 by PCR and sequencing of the variant. In addition to samples from uninfected controls with and without vaccination, samples from infected subjects with and without vaccination that represent eight major SARS-COV-2 lineages are included: epsilon, iota, alpha, delta, omicron BA.1, omicron BA.2, omicron BA.4, and omicron BA.5. Stranded single-end sequencing was performed using standard Illumina protocols. Reads were quantified to hg38 human transcriptome using Salmon after adapter trimming. Quantified reads were filtered to remove features with fewer than one count in 80% of the samples, and normalized using TPM, followed by quantile and log2 transformation.
Project description:Research suggests that specific behavior patterns may be related with the outcome and vulnerability of a COVID-19 infection; nevertheless, much of this information has been obtained by means of psychological paradigms that are not based on research conducted using experimental designs. Thus, the purpose of the present study was to identify behavior patterns associated with COVID-19 outcome and vulnerability from the point of view of the Reinforcement Sensitivity Theory. A total of 464 college students from Mexico-City participated in the study. Participants answered the Behavior Inhibition, Behavior Activation scales (Carver & White, 1994), the Reinforcement Sensitivity Theory Personality Questionnaire (Corr & Cooper, 2016) and a COVID-19 symptom checklist. Data showed that those individuals who respond in an enthusiastic way to rewards develop less symptoms of COVID-19. Additionally, individuals who are keen in the exploration and identification of new rewarding opportunities are less likely to develop a COVID-19 infection. Both findings suggest that a potent Behavior Activation System could protect individuals during the present pandemic. These results are in general agreement with others produced within the same framework.
Project description:(1) Background: In COVID-19 survivors there is an increased prevalence of pulmonary fibrosis of which the underlying molecular mechanisms are poorly understood; (2) Methods: In this multicentric study, n = 12 patients who succumbed to COVID-19 due to progressive respiratory failure were assigned to an early and late group (death within ≤7 and >7 days of hospitalization, respectively) and compared to n = 11 healthy controls; mRNA and protein expression as well as biological pathway analysis were performed to gain insights into the evolution of pulmonary fibrogenesis in COVID-19; (3) Results: Median duration of hospitalization until death was 3 (IQR25-75, 3-3.75) and 14 (12.5-14) days in the early and late group, respectively. Fifty-eight out of 770 analyzed genes showed a significantly altered expression signature in COVID-19 compared to controls in a time-dependent manner. The entire study group showed an increased expression of BST2 and IL1R1, independent of hospitalization time. In the early group there was increased activity of inflammation-related genes and pathways, while fibrosis-related genes (particularly PDGFRB) and pathways dominated in the late group; (4) Conclusions: After the first week of hospitalization, there is a shift from pro-inflammatory to fibrogenic activity in severe COVID-19. IL1R1 and PDGFRB may serve as potential therapeutic targets in future studies.