Unknown

Dataset Information

0

Exploration of Bacterial Bottlenecks and Streptococcus pneumoniae Pathogenesis by CRISPRi-Seq.


ABSTRACT: Streptococcus pneumoniae is an opportunistic human pathogen that causes invasive diseases, including pneumonia, with greater health risks upon influenza A virus (IAV) co-infection. To facilitate pathogenesis studies in vivo, we developed an inducible CRISPR interference system that enables genome-wide fitness testing in one sequencing step (CRISPRi-seq). We applied CRISPRi-seq to assess bottlenecks and identify pneumococcal genes important in a murine pneumonia model. A critical bottleneck occurs at 48 h with few bacteria causing systemic infection. This bottleneck is not present during IAV superinfection, facilitating identification of pneumococcal pathogenesis-related genes. Top in vivo essential genes included purA, encoding adenylsuccinate synthetase, and the cps operon required for capsule production. Surprisingly, CRISPRi-seq indicated no fitness-related role for pneumolysin during superinfection. Interestingly, although metK (encoding S-adenosylmethionine synthetase) was essential in vitro, it was dispensable in vivo. This highlights advantages of CRISPRi-seq over transposon-based genetic screens, as all genes, including essential genes, can be tested for pathogenesis potential.

SUBMITTER: Liu X 

PROVIDER: S-EPMC7855995 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5061371 | biostudies-literature
| S-EPMC5448163 | biostudies-literature
| S-EPMC8546594 | biostudies-literature
| S-EPMC6805112 | biostudies-literature
2021-09-02 | GSE173392 | GEO
2017-03-03 | GSE89763 | GEO
| S-EPMC3389256 | biostudies-literature
| S-EPMC3742648 | biostudies-literature
2012-09-01 | E-MEXP-3697 | biostudies-arrayexpress