Project description:BackgroundABL-class fusions including NUP214-ABL1 and EBF1-PDGFRB occur in high risk acute lymphoblastic leukaemia (ALL) with gene expression patterns similar to BCR-ABL-positive ALL. Our aim was to evaluate new DNA-based measurable residual disease (MRD) tests detecting these fusions and IKZF1-deletions in comparison with conventional immunoglobulin/T-cell receptor (Ig/TCR) markers.MethodsPrecise genomic breakpoints were defined from targeted or whole genome next generation sequencing for ABL-fusions and BCR-ABL1. Quantitative PCR assays were designed and used to re-measure MRD in remission bone marrow samples previously tested using Ig/TCR markers. All MRD testing complied with EuroMRD guidelines.ResultsABL-class patients had 46% 5year event-free survival and 79% 5year overall survival. All had sensitive fusion tests giving high concordance between Ig/TCR and ABL-class fusion results (21 patients, n = 257 samples, r2 = 0.9786, P < 0.0001) and Ig/TCR and IKZF1-deletion results (9 patients, n = 143 samples, r2 = 0.9661, P < 0.0001). In contrast, in BCR-ABL1 patients, Ig/TCR and BCR-ABL1 tests were discordant in 32% (40 patients, n = 346 samples, r2 = 0.4703, P < 0.0001) and IKZF1-deletion results were closer to Ig/TCR (25 patients, n = 176, r2 = 0.8631, P < 0.0001).ConclusionsMRD monitoring based on patient-specific assays detecting gene fusions or recurrent assays for IKZF1-deletions is feasible and provides good alternatives to Ig/TCR tests to monitor MRD in ABL-class ALL.
Project description:The last decade has seen a significant leap in our understanding of the wide range of genetic lesions underpinning acute lymphoblastic leukaemia (ALL). Next generation sequencing has led to the identification of driver mutations with significant implications on prognosis and has defined entities such as BCR-ABL-like ALL, where targeted therapies such as tyrosine kinase inhibitors (TKIs) and JAK inhibitors may play a role in its treatment. In Philadelphia positive ALL, the introduction of TKIs into frontline treatment regimens has already transformed patient outcomes. In B-ALL, agents targeting surface receptors CD19, CD20 and CD22, including monoclonal antibodies, bispecific T cell engagers, antibody drug conjugates and chimeric antigen receptor (CAR) T cells, have shown significant activity but come with unique toxicities and have implications for how treatment is sequenced. Advances in T-ALL have lagged behind those seen in B-ALL. However, agents such as nelarabine, bortezomib and CAR T cell therapy targeting T cell antigens have been examined with promising results seen. As our understanding of disease biology in ALL grows, as does our ability to target pathways such as apoptosis, through BH3 mimetics, chemokines and epigenetic regulators. This review aims to highlight a range of available and emerging targeted therapeutics in ALL, to explore their mechanisms of action and to discuss the current evidence for their use.
Project description:In the past few years, research in the underlying pathogenic mechanisms of acute myeloid leukaemia (AML) has led to remarkable advances in our understanding of the disease. Cytogenetic and molecular aberrations are the most important factors in determining response to chemotherapy as well as long-term outcome, but beyond prognostication are potential therapeutic targets. Our increased understanding of the pathogenesis of AML, facilitated by next-generation sequencing, has spurred the development of new compounds in the treatment of AML, particularly the creation of small molecules that target the disease on a molecular level. Various new agents, such as tyrosine kinase inhibitors, immune checkpoint inhibitors, monoclonal or bispecific T-cell engager antibodies, metabolic and pro-apoptotic agents are currently investigated within clinical trials. The highest response rates are often achieved when new molecularly targeted therapies are combined with standard chemotherapy. Presented here is an overview of novel therapies currently being evaluated in AML.
Project description:Maintenance chemotherapy with oral 6-mercaptopurine and methotrexate remains a cornerstone of modern therapy for acute lymphoblastic leukaemia. The dosage and intensity of therapy are based on surrogate markers such as peripheral blood leukocyte and neutrophil counts. Dosage based leukocyte count predictions could provide support for dosage decisions clinicians face trying to find and maintain an appropriate dosage for the individual patient. We present two Bayesian nonlinear state space models for predicting patient leukocyte counts during the maintenance therapy. The models simplify some aspects of previously proposed models but allow for some extra flexibility. Our second model is an extension which accounts for extra variation in the leukocyte count due to a treatment adversity, infections, using C-reactive protein as a surrogate. The predictive performances of our models are compared against a model from the literature using time series cross-validation with patient data. In our experiments, our simplified models appear more robust and deliver competitive results with the model from the literature.
Project description:We addressed the clinical significance and mechanisms behind in vitro cellular responses to ionising radiation (IR)-induced DNA double strand breaks in 74 paediatric ALL patients. We found an apoptosis-resistant response in 36% of patients and an apoptosis-sensitive response in the remaining 64% of leukaemias. Global gene expression profiling of 11 apoptosis-resistant and 11 apoptosis-sensitive ALLs revealed abnormal up-regulation of multiple pro-survival pathways in response to IR in apoptosis-resistant leukaemias and differential post-transcriptional activation of the PI3-Akt pathway was observed in representative resistant cases. It is possible that abnormal pro-survival responses to DNA damage provide one of the mechanisms of primary resistance in ALL . Keywords: Gene expression profiling; response to irradiation
Project description:Patients with refractory chronic lymphocytic leukaemia (CLL) still have an unfavourable prognosis and novel treatment strategies are necessary, preferably adjusted to the patient's individual situation. Refractoriness is no longer limited just to fludarabine (F) but extends to F-combinations with other chemotherapeutic agents (e.g. cyclophosphamide [C] and FC) and antibodies (e.g. rituximab [R], FR, and FCR). Also, refractoriness to alemtuzumab is an increasing problem. New pharmacological developments provide promising approaches. This review focuses on novel therapies such as monoclonal antibodies and small molecules aiming at specific targets of the CLL cell in the refractory situation. Approved therapeutic regimens will be presented as well as investigational approaches. An overview of completed and current clinical trials is offered.
Project description:Acute lymphoblastic leukaemia (ALL) is the most common cancer of childhood. Although the overall survival of children with ALL is now more than 90%, leukaemia remains one of the leading causes of death from disease. In developed countries, the overall survival of patients with ALL has increased to more than 80%; however, those children cured from ALL still show a significant risk of short- and long-term complications as a consequence of their treatment. Accordingly, there is a need not only to develop new methods of diagnosis and prognosis but also to provide patients with less toxic therapies. MicroRNAs (miRNAs) are small ribonucleic acids (RNA), usually without coding potential, that regulate gene expression by directing their target messenger RNAs (mRNAs) for degradation or translational suppression. In paediatric ALL, several miRNAs have been observed to be overexpressed or underexpressed in patient cohorts compared to healthy individuals, while numerous studies have identified specific miRNAs that can be used as biomarkers to diagnose ALL, classify it into subgroups, and predict prognosis. Likewise, a variety of miRNAs identify as candidate targets for treatment, although there are numerous obstacles to overcome before their clinical use in patients. Here, we summarise the roles played by different miRNAs in childhood leukaemia, focussing primarily on their use as diagnostic tools and potential therapeutic targets, as well as a role in predicting treatment outcome. Finally, we discuss the potential roles of miRNA in immunotherapy and the novel contributions made by gut miRNAs to regulation of the host microbiome.
Project description:Allogeneic hematopoietic cell transplantation (alloHCT) can cure previously treated high-risk chronic lymphocytic leukemia (CLL) patients if they are suitable for transplant through the graft-versus-leukemia effect. However, since the emergence of targeted therapies, the role of alloHCT for high-risk CLL is less clear. To address this question, we evaluated 108 high-risk CLL patients who underwent alloHCT from 2010 to 2018. Thirty patients from the period of 2013 to 2018 received targeted therapy prior to alloHCT. The median age for the targeted therapy cohort was 60 years (range, 30-71 years), and 20% and 73% had complete and partial remission, respectively: 76% had del(17p), 46.2% had 5 or more cytogenetic abnormalities, and 78.9% were IGHV unmutated. The median number of prior therapies was 4 (range, 1-9). With a median follow-up time of 36 months (range, 10-72 months), the 3-year overall (OS) and progression-free survival (PFS) were 87% and 69%, respectively. The 3-year cumulative incidence of nonrelapse mortality and relapse was 7% and 24%, respectively. For the control cohort of 78 patients who underwent alloHCT from 2010 to 2014 and received only chemoimmunotherapy prior to transplant, the 3-year OS and PFS were 69% and 58%, respectively. Patients treated with targeted therapy prior to alloHCT had a significantly higher number of circulating T and B cells and a lower ratio of CD4 regulatory T cells to CD4 conventional T cells early after transplant. In summary, despite multiple high-risk features, the clinical outcome of CLL patients who receive targeted therapy prior to transplant is excellent and alloHCT should be offered while the disease is under control.