Project description:A monoclonal antibody has been generated to human liver monoamine oxidase (MAO) B by fusion of mouse myeloma cells with spleen cells from a mouse immunized with a mixture of semi-purified MAO A and MAO B. The antibody, 3F12/G10, an immunoglobulin G1, reacts with its antigen in cryostat sections of human liver, showing an intracellular particulate distribution as demonstrated by immunoperoxidase staining. The antibody indirectly precipitates [3H]pargyline-labelled human MAO B both from liver and platelet extracts but fails to precipitate MAO A from liver extracts. The antibody does not recognise rat liver MAO B, showing that the determinant is not universally expressed on MAO B. The antibody has no effect on the catalytic activity of MAO B. Other monoclonal antibodies were generated but they are directed to a protein with a subunit Mr of 54 000, a contaminant of the MAO preparation. One of these antibodies, A8/C2, an IgG2a, reacts with the same protein in both rat and human liver extracts.
Project description:AimsMonoamine oxidases (MAOs) are mitochondrial flavoenzymes responsible for neurotransmitter and biogenic amines catabolism. MAO-A contributes to heart failure progression via enhanced norepinephrine catabolism and oxidative stress. The potential pathogenetic role of the isoenzyme MAO-B in cardiac diseases is currently unknown. Moreover, it is has not been determined yet whether MAO activation can directly affect mitochondrial function.ResultsIn wild type mice, pressure overload induced by transverse aortic constriction (TAC) resulted in enhanced dopamine catabolism, left ventricular (LV) remodeling, and dysfunction. Conversely, mice lacking MAO-B (MAO-B(-/-)) subjected to TAC maintained concentric hypertrophy accompanied by extracellular signal regulated kinase (ERK)1/2 activation, and preserved LV function, both at early (3 weeks) and late stages (9 weeks). Enhanced MAO activation triggered oxidative stress, and dropped mitochondrial membrane potential in the presence of ATP synthase inhibitor oligomycin both in neonatal and adult cardiomyocytes. The MAO-B inhibitor pargyline completely offset this change, suggesting that MAO activation induces a latent mitochondrial dysfunction, causing these organelles to hydrolyze ATP. Moreover, MAO-dependent aldehyde formation due to inhibition of aldehyde dehydrogenase 2 activity also contributed to alter mitochondrial bioenergetics.InnovationOur study unravels a novel role for MAO-B in the pathogenesis of heart failure, showing that both MAO-driven reactive oxygen species production and impaired aldehyde metabolism affect mitochondrial function.ConclusionUnder conditions of chronic hemodynamic stress, enhanced MAO-B activity is a major determinant of cardiac structural and functional disarrangement. Both increased oxidative stress and the accumulation of aldehyde intermediates are likely liable for these adverse morphological and mechanical changes by directly targeting mitochondria.
Project description:BackgroundMonoamine oxidase inhibitors (MAOIs) are being developed for major depressive disorder, Alzheimer's, and Parkinson's Disease. Newer MAOIs have minimal sensitivity to tyramine, but a key limitation for optimizing their development is that standards for in vivo monoamine oxidase-A (MAO-A) occupancy in humans are not well established. The objectives were to determine the dose-occupancy relationship of moclobemide and the occupancy of phenelzine at typical clinical dosing.MethodsMajor depressive episode (MDE) subjects underwent [(11)C]harmine positron emission tomography scanning prior to and following 6 weeks of treatment with moclobemide or phenelzine.ResultsMean brain MAO-A occupancies were 74.23±8.32% for moclobemide at 300-600 mg daily (n = 11), 83.75±5.52% for moclobemide at 900-1200 mg daily (n = 9), and 86.82±6.89% for phenelzine at 45-60 mg daily (n = 4). The regional dose-occupancy relationship of moclobemide fit a hyperbolic function [F(x) = a(x/[b + x]); F(1,18) = 5.57 to 13.32, p = 0.002 to 0.03, mean 'a': 88.62±2.38%, mean 'b': 69.88±4.36 mg]. Multivariate analyses of variance showed significantly greater occupancy of phenelzine (45-60mg) and higher-dose moclobemide (900-1200 mg) compared to lower-dose moclobemide [300-600 mg; F(7,16) = 3.94, p = 0.01].ConclusionsThese findings suggest that for first-line MDE treatment, daily moclobemide doses of 300-600mg correspond to a MAO-A occupancy of 74%, whereas for treatment-resistant MDE, either phenelzine or higher doses of moclobemide correspond to a MAO-A occupancy of at least 84%. Therefore, novel MAO inhibitor development should aim for similar thresholds. The findings provide a rationale in treatment algorithm design to raise moclobemide doses to inhibit more MAO-A sites, but suggest switching from high-dose moclobemide to phenelzine is best justified by binding to additional targets.
Project description:The monoamine oxidase (MAO) gene family encodes for enzymes that perform the oxidative deamination of monoamines, a process required to degrade norepinephrine, serotonin, dopamine, and other amines. While mammalian MAO enzymes, MAO A and MAO B, have been extensively studied, the molecular properties of the other family members are only partly uncovered. This study aims to explore the evolution of MAOs, emphasizing understanding of the MAO gene repertoire among vertebrates. Our analyses show that the duplication that gave rise to MAO A and MAO B occurred in the ancestor of tetrapods, between 408 and 352 million years ago. Nontetrapod jawed vertebrates possess the ancestral preduplicative condition of MAO A/B. Our results also identified a new family member, MAO F, in nontetrapod jawed vertebrates. Thus, most jawed vertebrates possess a repertoire of two MAO genes, MAO A and MAO B in tetrapods and MAO A/B and MAO F in nontetrapod jawed vertebrates, representing different MAO gene lineages. Jawless vertebrates possess the ancestral condition of a single copy gene, MAO A/B/F. Enzymatic assays conducted on the MAO recombinant enzymes of the Indo-Pacific tarpon show that both proteins, MAO A/B and MAO F, have enzymatic and molecular properties more similar to human MAO A, with the former featuring a strikingly higher activity rate when compared with all other MAO enzymes. Our analyses underscore the importance of scanning the tree of life for new gene lineages to understand phenotypic diversity and gain detailed insights into their function.
Project description:Mitochondrial dysfunction is involved in the pathophysiology of psychiatric and neurodegenerative disorders and can be used as a modulator and/or predictor of treatment responsiveness. Understanding the mitochondrial effects of antidepressants is important to connect mitochondria with their therapeutic and/or adverse effects. Pig brain-isolated mitochondria were used to evaluate antidepressant-induced changes in the activity of electron transport chain (ETC) complexes, monoamine oxidase (MAO), mitochondrial respiratory rate, and ATP. Bupropion, escitalopram, fluvoxamine, sertraline, paroxetine, and trazodone were tested. All tested antidepressants showed significant inhibition of complex I and IV activities at high concentrations (50 and 100 µmol/L); complex II + III activity was reduced by all antidepressants except bupropion. Complex I-linked respiration was reduced by escitalopram >> trazodone >> sertraline. Complex II-linked respiration was reduced only by bupropion. Significant positive correlations were confirmed between complex I-linked respiration and the activities of individual ETC complexes. MAO activity was inhibited by all tested antidepressants, with SSRIs causing a greater effect than trazodone and bupropion. The results indicate a probable association between the adverse effects of high doses of antidepressants and drug-induced changes in the activity of ETC complexes and the respiratory rate of mitochondria. In contrast, MAO inhibition could be linked to the antidepressant, procognitive, and neuroprotective effects of the tested antidepressants.
Project description:Amphetamine and its derivatives exhibit a wide range of pharmacological activities, including psychostimulant, hallucinogenic, entactogenic, anorectic, or antidepressant effects. The mechanisms of action underlying these effects are usually related to the ability of the different amphetamines to interact with diverse monoamine transporters or receptors. Moreover, many of these compounds are also potent and selective monoamine oxidase inhibitors. In the present work, we review how structural modifications on the aromatic ring, the amino group and/or the aliphatic side chain of the parent scaffold, modulate the enzyme inhibitory properties of hundreds of amphetamine derivatives. Furthermore, we discuss how monoamine oxidase inhibition might influence the pharmacology of these compounds.
Project description:Although mitochondrial dysfunction and oxidative stress have been proposed to play a crucial role in several types of muscular dystrophy (MD), whether a causal link between these two alterations exists remains an open question. We have documented that mitochondrial dysfunction through opening of the permeability transition pore plays a key role in myoblasts from patients as well as in mouse models of MD, and that oxidative stress caused by monoamine oxidases (MAO) is involved in myofiber damage. In the present study we have tested whether MAO-dependent oxidative stress is a causal determinant of mitochondrial dysfunction and apoptosis in myoblasts from patients affected by collagen VI myopathies. We find that upon incubation with hydrogen peroxide or the MAO substrate tyramine myoblasts from patients upregulate MAO-B expression and display a significant rise in reactive oxygen species (ROS) levels, with concomitant mitochondrial depolarization. MAO inhibition by pargyline significantly reduced both ROS accumulation and mitochondrial dysfunction, and normalized the increased incidence of apoptosis in myoblasts from patients. Thus, MAO-dependent oxidative stress is causally related to mitochondrial dysfunction and cell death in myoblasts from patients affected by collagen VI myopathies, and inhibition of MAO should be explored as a potential treatment for these diseases.