Unknown

Dataset Information

0

DksA-dependent regulation of RpoS contributes to Borrelia burgdorferi tick-borne transmission and mammalian infectivity.


ABSTRACT: Throughout its enzootic cycle, the Lyme disease spirochete Borreliella (Borrelia) burgdorferi, senses and responds to changes in its environment using a small repertoire of transcription factors that coordinate the expression of genes required for infection of Ixodes ticks and various mammalian hosts. Among these transcription factors, the DnaK suppressor protein (DksA) plays a pivotal role in regulating gene expression in B. burgdorferi during periods of nutrient limitation and is required for mammalian infectivity. In many pathogenic bacteria, the gene regulatory activity of DksA, along with the alarmone guanosine penta- and tetra-phosphate ((p)ppGpp), coordinate the stringent response to various environmental stresses, including nutrient limitation. In this study, we sought to characterize the role of DksA in regulating the transcriptional activity of RNA polymerase and its role in the regulation of RpoS-dependent gene expression required for B. burgdorferi infectivity. Using in vitro transcription assays, we observed recombinant DksA inhibits RpoD-dependent transcription by B. burgdorferi RNA polymerase independent of ppGpp. Additionally, we determined the pH-inducible expression of RpoS-dependent genes relies on DksA, but this relationship is independent of (p)ppGpp produced by Relbbu. Subsequent transcriptomic and western blot assays indicate DksA regulates the expression of BBD18, a protein previously implicated in the post-transcriptional regulation of RpoS. Moreover, we observed DksA was required for infection of mice following intraperitoneal inoculation or for transmission of B. burgdorferi by Ixodes scapularis nymphs. Together, these data suggest DksA plays a central role in coordinating transcriptional responses in B. burgdorferi required for infectivity through DksA's interactions with RNA polymerase and post-transcriptional control of RpoS.

SUBMITTER: Boyle WK 

PROVIDER: S-EPMC7924775 | biostudies-literature | 2021 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

DksA-dependent regulation of RpoS contributes to Borrelia burgdorferi tick-borne transmission and mammalian infectivity.

Boyle William K WK   Richards Crystal L CL   Dulebohn Daniel P DP   Zalud Amanda K AK   Shaw Jeff A JA   Lovas Sándor S   Gherardini Frank C FC   Bourret Travis J TJ  

PLoS pathogens 20210218 2


Throughout its enzootic cycle, the Lyme disease spirochete Borreliella (Borrelia) burgdorferi, senses and responds to changes in its environment using a small repertoire of transcription factors that coordinate the expression of genes required for infection of Ixodes ticks and various mammalian hosts. Among these transcription factors, the DnaK suppressor protein (DksA) plays a pivotal role in regulating gene expression in B. burgdorferi during periods of nutrient limitation and is required for  ...[more]

Similar Datasets

2022-11-09 | GSE217236 | GEO
| S-EPMC7792743 | biostudies-literature
2021-12-08 | GSE169293 | GEO
| S-EPMC4798528 | biostudies-literature