Project description:BackgroundA large cluster of 59 cases were linked to a single flight with 146 passengers from New Delhi to Hong Kong in April 2021. This outbreak coincided with early reports of exponential pandemic growth in New Delhi, which reached a peak of > 400 000 newly confirmed cases on 7 May 2021.MethodsEpidemiological information including date of symptom onset, date of positive-sample detection and travel and contact history for individual cases from this flight were collected. Whole genome sequencing was performed, and sequences were classified based on the dynamic Pango nomenclature system. Maximum-likelihood phylogenetic analysis compared sequences from this flight alongside other cases imported from India to Hong Kong on 26 flights between June 2020 and April 2021, as well as sequences from India or associated with India-related travel from February to April 2021 and 1217 reference sequences.ResultsSequence analysis identified six lineages of SARS-CoV-2 belonging to two variants of concern (Alpha and Delta) and one variant of public health interest (Kappa) involved in this outbreak. Phylogenetic analysis confirmed at least three independent sub-lineages of Alpha with limited onward transmission, a superspreading event comprising 37 cases of Kappa and transmission of Delta to only one passenger. Additional analysis of another 26 flights from India to Hong Kong confirmed widespread circulation of all three variants in India since early March 2021.ConclusionsThe broad spectrum of disease severity and long incubation period of SARS-CoV-2 pose a challenge for surveillance and control. As illustrated by this particular outbreak, opportunistic infections of SARS-CoV-2 can occur irrespective of variant lineage, and requiring a nucleic acid test within 72 hours of departure may be insufficient to prevent importation or in-flight transmission.
Project description:Although there have been several case reports and simulation models of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission associated with air travel, there are limited data to guide testing strategy to minimize the risk of SARS-CoV-2 exposure and transmission onboard commercial aircraft. Among 9853 passengers with a negative SARS-CoV-2 polymerase chain reaction test performed within 72 hours of departure from December 2020 through May 2021, five (0.05%) passengers with active SARS-CoV-2 infection were identified with rapid antigen tests and confirmed with rapid molecular test performed before and after an international flight from the United States to Italy. This translates to a case detection rate of 1 per 1970 travelers during a time of high prevalence of active infection in the United States. A negative molecular test for SARS-CoV-2 within 72 hours of international airline departure results in a low probability of active infection identified on antigen testing during commercial airline flight.
Project description:In many regions of the world, the Alpha, Beta and Gamma SARS-CoV-2 Variants of Concern (VOCs) co-circulated during 2020-21 and fueled waves of infections. During 2021, these variants were almost completely displaced by the Delta variant, causing a third wave of infections worldwide. This phenomenon of global viral lineage displacement was observed again in late 2021, when the Omicron variant disseminated globally. In this study, we use phylogenetic and phylogeographic methods to reconstruct the dispersal patterns of SARS-CoV-2 VOCs worldwide. We find that the source-sink dynamics of SARS-CoV-2 varied substantially by VOC, and identify countries that acted as global hubs of variant dissemination, while other countries became regional contributors to the export of specific variants. We demonstrate a declining role of presumed origin countries of VOCs to their global dispersal: we estimate that India contributed <15% of all global exports of Delta to other countries and South Africa <1-2% of all global Omicron exports globally. We further estimate that >80 countries had received introductions of Omicron BA.1 100 days after its inferred date of emergence, compared to just over 25 countries for the Alpha variant. This increased speed of global dissemination was associated with a rebound in air travel volume prior to Omicron emergence in addition to the higher transmissibility of Omicron relative to Alpha. Our study highlights the importance of global and regional hubs in VOC dispersal, and the speed at which highly transmissible variants disseminate through these hubs, even before their detection and characterization through genomic surveillance.HighlightsGlobal phylogenetic analysis reveals relationship between air travel and speed of dispersal of SARS-CoV-2 variants of concern (VOCs)Omicron VOC spread to 5x more countries within 100 days of its emergence compared to all other VOCsOnward transmission and dissemination of VOCs Delta and Omicron was primarily from secondary hubs rather than initial country of detection during a time of increased global air travelAnalysis highlights highly connected countries identified as major global and regional exporters of VOCs.
Project description:Limited data are available on the effects of air travel in patients with pulmonary hypertension (PH), despite their risk of physiologic compromise. We sought to quantify the incidence and severity of hypoxemia experienced by people with PH during commercial air travel.We recruited 34 participants for a prospective observational study during which cabin pressure, oxygen saturation (Sp O 2 ), heart rate, and symptoms were documented serially at multiple predefined time points throughout commercial flights. Oxygen desaturation was defined as SpO2, <85%.Median flight duration was 3.6 h (range, 1.0-7.3 h). Mean ± SD cabin pressure at cruising altitude was equivalent to the pressure 1,968 ± 371 m (6,456 ± 1,218 ft) above sea level (ASL)(maximum altitude 5 2,621 m [8,600 ft] ASL). Median change in Sp O 2 from sea level to cruising altitude was 2 4.9% (range, 2.0% to 2 15.8%). Nine subjects (26% [95% CI, 12%-38%]) experienced oxygen desaturation during flight (minimum Sp O 2 5 74%). Thirteen subjects (38%) reported symptoms during flight, of whom five also experienced desaturations. Oxygen desaturation was associated with cabin pressures equivalent to . 1,829 m (6,000 ft) ASL, ambulation, and flight duration(all P values , .05).Hypoxemia is common among people with PH traveling by air, occurring in one in four people studied. Hypoxemia was associated with lower cabin pressures, ambulation during flight, and longer flight duration. Patients with PH who will be traveling on flights of longer duration or who have a history of oxygen use, including nocturnal use only, should be evaluated for supplemental in-flight oxygen.
Project description:Air travel has expanded at an unprecedented rate and continues to do so. Its effects have been seen on malaria in rates of imported cases, local outbreaks in non-endemic areas and the global spread of drug resistance. With elimination and global eradication back on the agenda, changing levels and compositions of imported malaria in malaria-free countries, and the threat of artemisinin resistance spreading from Southeast Asia, there is a need to better understand how the modern flow of air passengers connects each Plasmodium falciparum- and Plasmodium vivax-endemic region to the rest of the world.Recently constructed global P. falciparum and P.vivax malaria risk maps, along with data on flight schedules and modelled passenger flows across the air network, were combined to describe and quantify global malaria connectivity through air travel. Network analysis approaches were then utilized to describe and quantify the patterns that exist in passenger flows weighted by malaria prevalence. Finally, the connectivity within and to the Southeast Asia region where the threat of imported artemisinin resistance arising is highest, was examined to highlight risk routes for its spread.The analyses demonstrate the substantial connectivity that now exists between and from malaria-endemic regions through air travel. While the air network provides connections to previously isolated malarious regions, it is clear that great variations exist, with significant regional communities of airports connected by higher rates of flow standing out. The structures of these communities are often not geographically coherent, with historical, economic and cultural ties evident, and variations between P. falciparum and P. vivax clear. Moreover, results highlight how well connected the malaria-endemic areas of Africa are now to Southeast Asia, illustrating the many possible routes that artemisinin-resistant strains could take.The continuing growth in air travel is playing an important role in the global epidemiology of malaria, with the endemic world becoming increasingly connected to both malaria-free areas and other endemic regions. The research presented here provides an initial effort to quantify and analyse the connectivity that exists across the malaria-endemic world through air travel, and provide a basic assessment of the risks it results in for movement of infections.
Project description:Continuous assessment of the impact of SARS-CoV-2 on the host at the cell-type level is crucial for understanding key mechanisms involved in host defense responses to viral infection. We investigated host response to ancestral-strain and Alpha-variant SARS-CoV-2 infections within air-liquid-interface human nasal epithelial cells from younger adults (26-32 Y) and older children (12-14 Y) using single-cell RNA-sequencing. Ciliated and secretory-ciliated cells formed the majority of highly infected cell-types, where the latter derived from ciliated lineages. Strong innate immune responses were observed across lowly-infected and un-infected bystander cells and heightened in Alpha-infection. Alpha highly-infected cells showed increased expression of protein-refolding genes compared with ancestral-strain-infected cells in children. Furthermore, oxidative phosphorylation-related genes were down-regulated in bystander cells versus infected and mock-control, underscoring the importance of these biological functions for viral replication. Overall, this study highlights the complexity of cell-type-, age- and viral strain-dependent host epithelial responses to SARS-CoV-2.
Project description:Air travel may be associated with viruses spread via infected passengers and potentially through in-flight transmission. Given the novelty of the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, transmission associated with air travel is based on transmission dynamics of other respiratory viruses. Our objective was to provide a rapid summary and evaluation of relevant data on SARS-CoV-2 transmission aboard aircraft, report policy implications and to highlight research gaps requiring urgent attention. We searched four electronic databases (1 February 2020-27 January 2021) and included studies on SARS-CoV-2 transmission aboard aircraft. We assessed study quality based on five criteria and reported important findings. We included 18 studies on in-flight SARS-CoV-2 transmission (130 unique flights) and 2 studies on wastewater from aircraft. The quality of evidence from most published studies was low. Two wastewater studies reported PCR-positive samples with high cycle threshold values (33-39). Index case definition was heterogeneous across studies. The proportion of contacts traced ranged from 0.68 to 100%. Authors traced 2800/19 729 passengers, 140/180 crew members and 8/8 medical staff. Altogether, 273 index cases were reported, with 64 secondary cases. Three studies, each investigating one flight, reported no secondary cases. Secondary attack rate among studies following up >80% of passengers and crew (including data on 10 flights) varied between 0 and 8.2%. The studies reported on the possibility of SARS-CoV-2 transmission from asymptomatic, pre-symptomatic and symptomatic individuals. Two studies performed viral cultures with 10 positive results. Genomic sequencing and phylogenetic analysis were performed in individuals from four flights. Current evidence suggests SARS-CoV-2 can be transmitted during aircraft travel, but published data do not permit any conclusive assessment of likelihood and extent. The variation in design and methodology restricts the comparison of findings across studies. Standardized guidelines for conducting and reporting future studies of transmission on aircraft should be developed.
Project description:ObjectivesThis is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the effectiveness of different SARS-CoV-2 testing strategies in reducing COVID-19 cases, hospitalisations, and deaths among suspected cases and asymptomatic individuals.
Project description:The coronavirus disease 2019 (COVID-19) has caused a large global outbreak. It is accordingly important to develop accurate and rapid diagnostic methods. The polymerase chain reaction (PCR)-based method including reverse transcription-polymerase chain reaction (RT-PCR) is the most widely used assay for the detection of SARS-CoV-2 RNA. Along with the RT-PCR method, digital PCR has emerged as a powerful tool to quantify nucleic acid of the virus with high accuracy and sensitivity. Non-PCR based techniques such as reverse transcription loop-mediated isothermal amplification (RT-LAMP) and reverse transcription recombinase polymerase amplification (RT-RPA) are considered to be rapid and simple nucleic acid detection methods and were reviewed in this paper. Non-conventional molecular diagnostic methods including next-generation sequencing (NGS), CRISPR-based assays and nanotechnology are improving the accuracy and sensitivity of COVID-19 diagnosis. In this review, we also focus on standardization of SARS-CoV-2 nucleic acid testing and the activity of the National Metrology Institutes (NMIs) and highlight resources such as reference materials (RM) that provide the values of specified properties. Finally, we summarize the useful resources for convenient COVID-19 molecular diagnostics.