Correction: Study of chromium, selenium and bromine concentrations in blood serum of patients with parenteral nutrition treatment using total reflection X-ray fluorescence analysis.
Ontology highlight
ABSTRACT: [This corrects the article DOI: 10.1371/journal.pone.0243492.].
Correction: Study of chromium, selenium and bromine concentrations in blood serum of patients with parenteral nutrition treatment using total reflection X-ray fluorescence analysis.
PloS one 20210324 3
[This corrects the article DOI: 10.1371/journal.pone.0243492.]. ...[more]
Project description:Total reflection X-ray fluorescence analysis (TXRF) was used to determine chromium, selenium and bromine concentrations in blood serum samples of 50 patients with parenteral nutrition treatment. The concentrations were measured two times, namely in the first day (I measurement) of the treatment and the seventh day (II measurement) after the chromium and selenium supplementation. For comparison purposes also serum samples of 50 patients without nutritional disorders, admitted to a planned surgical procedure to remove the gall bladder (cholecystectomy), were analyzed and treated as the control group. Descriptive statistics of measured concentrations of Cr, Se and Br both for the studied and control groups was determined. In order to check the effectiveness of Cr and Se supplementation, the results of the first and seventh day measurements for studied group were statistically compared with each other, with literature reference values and with the results of the control group (two-group comparison). These comparisons indicate the effectiveness of selenium supplementation in the applied treatment procedure. In the case of Cr and Br concentrations no statistically significant differences were observed. We conclude that monitoring of the concentration of the important trace elements in human serum should be standard procedure in parenteral nutrition treatment. In this monitoring the TXRF technique can be successfully used.
Project description:Zinc and selenium are essential minerals for human nutrition. Reliable biomarkers of zinc status and selenium status in humans are therefore important. This work investigates a novel portable X-ray fluorescence (XRF) method with the ability to rapidly assess zinc and selenium in nail clippings. This approach used a mono-energetic X-ray beam to excite characteristic X-rays from the clippings. Nail clippings were obtained from the Mother and Infant Nutrition Investigation (MINI), a study designed to assess nutrition in a population of women and their breastfed children in New Zealand. Twenty mother-infant pairings were selected to provide nail clippings at two time points (visit 1 at 3 months postpartum; visit 2 at 6 months postpartum). Nail clippings from each mother-infant pairing were divided into three groupings of clippings prior to analysis: those obtained from a big toe of the mother, those from the other toes of the mother, and those from the toes and fingers of the infant. Clippings were prepared and mounted prior to XRF measurement, providing four distinct fragments from each clipping grouping. These fragments were assessed by XRF using a measurement time of either 300 s (visit 1) or 180 s (visit 2). XRF results were determined through both an automated system output and an analysis of the X-ray energy spectrum. Following this assessment of zinc and selenium with the non-destructive XRF method, clippings were measured for zinc and selenium concentration using a "gold standard" technique of inductively coupled plasma mass spectrometry (ICP-MS). Mean ICP-MS concentrations ranged from 122 μg/g to 127 μg/g for zinc, and from 0.646 μg/g to 0.659 μg/g for selenium. Precision, assessed by a relative standard deviation of measurement, was superior for ICP-MS relative to XRF. For both zinc and selenium, XRF results were compared with ICP-MS concentrations. Linear equations of best fit were determined for each comparison between XRF and ICP-MS results. Coefficients of determination (r2) were stronger for zinc (from 0.74 to 0.95) than selenium (from 0.53 to 0.70). A decrease in XRF measurement time from 300 s to 180 s did not appear to adversely affect the correlation between XRF and ICP-MS results. Using the mono-energetic portable XRF method, the correlation of XRF zinc results with ICP-MS zinc concentrations was improved over previous findings, and selenium measurement was reported for the first time. The method may prove useful for future applications to trace element analysis using nail clippings as a biomarker.
Project description:Total parenteral nutrition has been used in clinical practice for over a quarter of a century. It has revolutionized the management of potentially fatal condition like the short bowel syndrome in infants as well as adults. Refinements in techniques have led to development of sophisticated catheters and delivery systems. Better understanding of human nutrition and metabolic processes has lead to formulation of scientific parenteral solutions to suit specific situations. This article addresses the role of total parenteral nutrition in modern surgical practice.
Project description:BackgroundSelenium (Se), Manganese (Mn), and Chromium (Cr) are dietary minerals ingested from specific grains, vegetables, and animal meats. Prior research showed that these minerals affect animal erythrocyte health but have unknown effects on human red blood cells (RBCs) and hematology. This study evaluated the effects of these dietary minerals on RBC count, hematocrit, and hemoglobin.MethodsWe conducted a cross-sectional analysis of 23,844 American participants from the 2015-2016 and 2017-2020 National Health and Nutrition Examination Survey. We evaluated sex, age, ethnicity, education, income, and smoking status as covariates. Linear regression analyses were conducted to evaluate the effect of Cr, Se, and Mn on RBC count, hematocrit, and hemoglobin levels. We employed subpopulation-exclusion regressions further to explore the distinct effects of mineral elevation and deficiency. Additional analyses were performed to examine the relationship between Mn and RBC hemoglobin, RBC distribution width, transferrin receptor concentrations, transferrin saturation, and serum iron levels to support the interpretation of our findings. Optimizable ensemble machine learning models were used to corroborate regression results.ResultsAdjusting for covariates, Cr was inversely associated with RBC count (Exp(b) = 0.954), hemoglobin (Exp(b) = 0.868), and hematocrit (Exp(b) = 0.668). Conversely, Se was positively associated with RBC count (Exp(b) = 1.003), hemoglobin (Exp(b) = 1.012), and hematocrit (Exp(b) = 1.032). Mn was positively associated with RBC count (Exp(b) = 1.020) but inversely associated with hemoglobin (Exp(b) = 0.945) and hematocrit (Exp(b) = 0.891).ConclusionsCr was harmful to RBC health in all subpopulations, whereas Se was protective. Mn appears to contribute to the development of microcytic anemia, but only in subjects with clinically elevated Mn levels. Thus, excessive consumption of foods and supplements rich in Cr and Mn may harm human erythrocyte health and hematology.
Project description:X-ray fluorescence mapping (XRF) is a highly efficient and non-invasive technique for quantifying material composition with micro and nanoscale spatial resolutions. Quantitative XRF analysis, however, confronts challenges from the long-lasting problem called self-absorption. Moreover, correcting two-dimensional XRF mapping datasets is particularly difficult because it is an ill-posed inverse problem. Here we report a semi-empirical method that can effectively correct 2D XRF mapping data. The correction error is generally less than 10% from a comprehensive evaluation of the accuracy in various configurations. The proposed method was applied to quantify the composition distribution around the grain boundaries in an electrochemically corroded stainless steel sample. Highly localized Cr enrichment was found around the crack sites, which was invisible before the absorption correction.
Project description:Dietary nitrate and nitrite are sources of gastric NO, which modulates blood flow, mucus production, and microbial flora. However, the intake and importance of these anions in infants is largely unknown. Nitrate and nitrite levels were measured in breast milk of mothers of preterm and term infants, infant formulas, and parenteral nutrition. Nitrite metabolism in breast milk was measured after freeze-thawing, at different temperatures, varying oxygen tensions, and after inhibition of potential nitrite-metabolizing enzymes. Nitrite concentrations averaged 0.07 ± 0.01 μM in milk of mothers of preterm infants, less than that of term infants (0.13 ± 0.02 μM) (P < .01). Nitrate concentrations averaged 13.6 ± 3.7 μM and 12.7 ± 4.9 μM, respectively. Nitrite and nitrate concentrations in infant formulas varied from undetectable to many-fold more than breast milk. Concentrations in parenteral nutrition were equivalent to or lower than those of breast milk. Freeze-thawing decreased nitrite concentration ~64%, falling with a half-life of 32 minutes at 37°C. The disappearance of nitrite was oxygen-dependent and prevented by ferricyanide and 3 inhibitors of lactoperoxidase. Nitrite concentrations in breast milk decrease with storage and freeze-thawing, a decline likely mediated by lactoperoxidase. Compared to adults, infants ingest relatively little nitrite and nitrate, which may be of importance in the modulation of blood flow and the bacterial flora of the infant GI tract, especially given the protective effects of swallowed nitrite.
Project description:BackgroundThe first consensus standardised neonatal parenteral nutrition formulations were implemented in many neonatal units in Australia in 2012. The current update involving 49 units from Australia, New Zealand, Singapore, Malaysia and India was conducted between September 2015 and December 2017 with the aim to review and update the 2012 formulations and guidelines.MethodsA systematic review of available evidence for each parenteral nutrient was undertaken and new standardised formulations and guidelines were developed.ResultsFive existing preterm Amino acid-Dextrose formulations have been modified and two new concentrated Amino acid-Dextrose formulations added to optimise amino acid and nutrient intake according to gestation. Organic phosphate has replaced inorganic phosphate allowing for an increase in calcium and phosphate content, and acetate reduced. Lipid emulsions are unchanged, with both SMOFlipid (Fresenius Kabi, Australia) and ClinOleic (Baxter Healthcare, Australia) preparations included. The physicochemical compatibility and stability of all formulations have been tested and confirmed. Guidelines to standardise the parenteral nutrition clinical practice across facilities have also been developed.ConclusionsThe 2017 PN formulations and guidelines developed by the 2017 Neonatal Parenteral Nutrition Consensus Group offer concise and practical instructions to clinicians on how to implement current and up-to-date evidence based PN to the NICU population.
Project description:The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells.
Project description:BackgroundThe elemental composition of herbal infusions and teas has not been sufficiently investigated. It could potentially be used for defining fingerprints for individual herbal / tea infusions, differentiation of botanical families, detecting the influence of packaging, and other purposes. The objective of this study was to determine the elemental composition, including the trace element content, of various herbal infusions and teas by means of total reflection X-ray fluorescence analysis (TXRF), with a chemometrics approach using principal component analysis (PCA).ResultsThis study determined the elemental composition of various herbal infusions and teas, including trace elements, using total reflection X-ray fluorescence (TXRF). The methodology for the sample preparation was established, including the multiple-steepings procedure for the two tea samples (Oolong and Pu-erh). Data from 29 samples were collected. We hypothesized that the elemental content of infusions could reflect certain features, such as the influence of processing and the type of tea.ConclusionA chemometric approach (PCA) was applied, and differences between teas and herbal infusions were found. This was further corroborated by explicit differentiation of one botanical family, Theaceae. The influence of packaging (tea bags) on herbal material was identified. The three types of tea (Camellia sinensis) appeared to be separated with PCA, and elemental concentrations in Pu-erh changed with multiple steepings.
Project description:It is a strong and commonly held belief among nutrition clinicians that enteral nutrition is preferable to parenteral nutrition. We provide a narrative review of more recent studies and technical reviews comparing enteral nutrition with parenteral nutrition. Despite significant weaknesses in the existing data, current literature continues to support the use of enteral nutrition in patients requiring nutrition support, over parenteral nutrition.