Project description:Infantile neuroaxonal dystrophy (INAD) is an autosomal recessive progressive neurodegenerative disease that presents within the first 2 years of life and culminates in death by age 10 years. Affected individuals from two unrelated Bedouin Israeli kindreds were studied. Brain imaging demonstrated diffuse cerebellar atrophy and abnormal iron deposition in the medial and lateral globus pallidum. Progressive white-matter disease and reduction of the N-acetyl aspartate : chromium ratio were evident on magnetic resonance spectroscopy, suggesting loss of myelination. The clinical and radiological diagnosis of INAD was verified by sural nerve biopsy. The disease gene was mapped to a 1.17-Mb locus on chromosome 22q13.1 (LOD score 4.7 at recombination fraction 0 for SNP rs139897), and an underlying mutation common to both affected families was identified in PLA2G6, the gene encoding phospholipase A2 group VI (cytosolic, calcium-independent). These findings highlight a role of phospholipase in neurodegenerative disorders.
Project description:BackgroundINAD is an autosomal recessive neurogenetic disorder caused by biallelic pathogenic variants in PLA2G6. The downstream enzyme, iPLA2, plays a critical role in cell membrane homeostasis by helping to regulate levels of phospholipids. The clinical presentation occurs between 6 months and 3 years with global developmental regression, hypotonia, and progressive spastic tetraparesis. Progression is often rapid, resulting in severe spasticity, visual impairment, and cognitive decline, with many children not surviving past the first decade of life. To date, no accepted tool for assessing the severity of INAD exists; other commonly used scales (e.g. CHOP-INTEND, Modified Ashworth, Hammersmith Functional Motor Scale) do not accurately gauge the current severity of INAD, nor are they sensitive/specific enough to monitor disease progression. Finally, these other scales are not appropriate, because they do not address the combination of CNS, peripheral nerve, and visual pathology that occurs in children with INAD.MethodsWe have developed and validated a structured neurological examination for INAD (scored out of 80). The examination includes six main categories of pediatric developmental evaluation: 1) gross motor-and-truncal-stability skills, 2) fine motor skills, 3) bulbar function, 4) ocular function, 5) temporo-frontal function, and, 6) Functional evaluation of the autonomic nervous system. A cohort of patients diagnosed with INAD were followed prospectively to validate the score against disease severity and disease progression.ResultsWe show significant correlation between the total neurological assessment score and months since symptom onset with a statistically significant (p = 6.7 × 10- 07) correlation between assessment score and disease onset. As hypothesized, the coefficient of months-since-symptom-onset is strongly negative, indicating a negative correlation between total score and months since symptom onset.ConclusionWe have developed and validated a novel neurological assessment score in INAD that demonstrates strong correlation with disease severity and disease progression.
Project description:Infantile neuroaxonal dystrophy (INAD) is a rare neurodegenerative disease. Two boys aged 3 years and 4 years and 2 months respectively, were admitted to the hospital due to delayed mental and motor development. There were no abnormalities at birth, and both children had low muscle strength and tension on admission. One child was not able to stand alone and had impaired vision. Electromyography showed neurogenic damage, and head MRI revealed cerebellar atrophy. High-throughput sequencing revealed compound heterozygous mutations in the PLA2G6 gene in the two children. The mutations (IVS11-1G>T and c.1984C>G) in one child were new mutations, and immunohistochemistry showed a reduction in the protein expression of PLAG6 in the muscular tissue of this child. INAD has the main clinical manifestations of psychomotor developmental regression and cerebellar atrophy. High-throughput sequencing can help with clinical diagnosis.
Project description:Mutations in PLA2G6, which encodes calcium-independent phospholipase A(2) group VIA (iPLA2-VIA), underlie the autosomal recessive disorder infantile neuroaxonal dystrophy (INAD). INAD typically presents in the first year of life, and leads to optic atrophy and psychomotor regression. We have examined PLA2G6 expression in early human embryonic development by in situ hybridization. At Carnegie Stage (CS) 19 (approximately 7 post-conception weeks [PCW]), strong expression is evident in the ventricular zone (VZ) of midbrain and forebrain suggestive of expression in neural stem and progenitor cells. At CS23 (8PCW) expression is also detectable in the VZ of the hindbrain and the subventricular zone (SVZ) of the developing neocortex, ganglionic eminences and diencephalon. By 9PCW strong expression in the post-mitotic cells of the cortical plate can be seen in the developing neocortex. In the eye, expression is seen in the lens and retina at all stages examined. PLA2G6 expression is also evident in the alar plate of the spinal cord, dorsal root ganglia, the retina and lens in the eye and several non-neuronal tissues, including developing bones, lung, kidney and gut. These findings suggest a role for PLA2G6 in neuronal proliferation throughout the developing brain and in maturing neurons in the cortical plate and hindbrain. Although widespread PLA2G6 expression is detected in neuronal tissues, the pattern shows dynamic changes with time and indicates that INAD pathogenesis may begin prior to birth.
Project description:Mutations in PLA2G6 were identified in patients with a spectrum of neurodegenerative conditions, such as infantile neuroaxonal dystrophy (INAD), atypical late-onset neuroaxonal dystrophy (ANAD) and dystonia parkinsonism complex (DPC). However, there is no report on the genetic analysis of families with members affected with INAD, ANAD and DPC from India. Therefore, the main aim of this study was to perform genetic analysis of 22 Indian families with INAD, ANAD and DPC. DNA sequence analysis of the entire coding region of PLA2G6 identified 13 different mutations, including five novel ones (p.Leu224Pro, p.Asp283Asn, p.Arg329Cys, p.Leu491Phe, and p.Arg649His), in 12/22 (54.55%) families with INAD and ANAD. Interestingly, one patient with INAD was homozygous for two different mutations, p.Leu491Phe and p.Ala516Val, and thus harboured four mutant alleles. With these mutations, the total number of mutations in this gene reaches 129. The absence of mutations in 10/22 (45.45%) families suggests that the mutations could be in deep intronic or promoter regions of this gene or these families could have mutations in a yet to be identified gene. The present study increases the mutation landscape of PLA2G6. The present finding will be useful for genetic diagnosis, carrier detection and genetic counselling to families included in this study and other families with similar disease condition.
Project description:Infantile neuroaxonal dystrophy (INAD) is a rare neurodegenerative disorder. Phospholipase A2 group VI (PLA2G6) gene mutations have been identified in the majority of individuals with INAD. The present case report is on a Chinese female pediatric patient (age, 18 months) diagnosed with INAD with deafness. To date, only four cases of INAD with hearing loss have been reported, PLA2G6-association has not been investigated. Next-generation DNA sequencing technology was used to identify disease-associated genes and Sanger sequencing was applied to verify the mutation in the patient's pedigree. Two mutations were identified in the PLA2G6 gene: c.1T>C (E2) and c.497 (E4) to c.496 (E4): Insert C. The distribution frequency of those mutations in the Single Nucleotide Polymorphism, HapMap, 1000 Genomes and Exome Aggregation Consortium databases was 0. However, cases of INAD appear to be underreported, particularly those from China. The identification of two mutations in the present study suggests unique PLA2G6 mutations in Chinese patients, and greatly expands on the spectrum of known mutations in INAD patients.
Project description:BackgroundMutations in the PLA2G6 gene have been identified in autosomal recessive neurodegenerative diseases classified as infantile neuroaxonal dystrophy (INAD), neurodegeneration with brain iron accumulation (NBIA), and dystonia-parkinsonism. These clinical syndromes display two significantly different disease phenotypes. NBIA and INAD are very similar, involving widespread neurodegeneration that begins within the first 1-2 years of life. In contrast, patients with dystonia-parkinsonism present with a parkinsonian movement disorder beginning at 15 to 30 years of age. The PLA2G6 gene encodes the PLA2G6 enzyme, also known as group VIA calcium-independent phospholipase A(2), which has previously been shown to hydrolyze the sn-2 acyl chain of phospholipids, generating free fatty acids and lysophospholipids.Methodology/principal findingsWe produced purified recombinant wildtype (WT) and mutant human PLA2G6 proteins and examined their catalytic function using in vitro assays with radiolabeled lipid substrates. We find that human PLA2G6 enzyme hydrolyzes both phospholipids and lysophospholipids, releasing free fatty acids. Mutations associated with different disease phenotypes have different effects on catalytic activity. Mutations associated with INAD/NBIA cause loss of enzyme activity, with mutant proteins exhibiting less than 20% of the specific activity of WT protein in both lysophospholipase and phospholipase assays. In contrast, mutations associated with dystonia-parkinsonism do not impair catalytic activity, and two mutations produce a significant increase in specific activity for phospholipid but not lysophospholipid substrates.Conclusions/significanceThese results indicate that different alterations in PLA2G6 function produce the different disease phenotypes of NBIA/INAD and dystonia-parkinsonism. INAD/NBIA is caused by loss of the ability of PLA2G6 to catalyze fatty acid release from phospholipids, which predicts accumulation of PLA2G6 phospholipid substrates and provides a mechanistic explanation for the accumulation of membranes in neuroaxonal spheroids previously observed in histopathological studies of INAD/NBIA. In contrast, dystonia-parkinsonism mutations do not appear to directly impair catalytic function, but may modify substrate preferences or regulatory mechanisms for PLA2G6.
Project description:Infantile neuroaxonal dystrophy (INAD; OMIM #no. 256600) is an inherited degenerative nervous system disorder characterized by nerve abnormalities in brain, spinal cord and peripheral nerves. About 85% of INAD patients carry mutations in the PLA2G6 gene that encodes for a Ca(2+)-independent phospholipase A(2) (VIA iPLA(2)), but how these mutations lead to disease is unknown. Besides regulating phospholipid homeostasis, VIA iPLA(2) is emerging with additional non-canonical functions, such as modulating store-regulated Ca(2+) entry into cells, and mitochondrial functions. In turn, defective Ca(2+) regulation could contribute to the development of INAD. Here, we studied possible changes in ATP-induced Ca(2+) signaling in astrocytes derived from two mutant strains of mice. The first strain carries a hypomorphic allele of the Pla2g6 that reduces transcript levels to 5-10% of that observed in wild-type mice. The second strain carries a point mutation in Pla2g6 that results in inactive VIA iPLA(2) protein with postulated gain in toxicity. Homozygous mice from both strains develop pathology analogous to that observed in INAD patients. The nucleotide ATP is the most important transmitter inducing Ca(2+) signals in astroglial networks. We demonstrate here a severe disturbance in Ca(2+) responses to ATP in astrocytes derived from both mutant mouse strains. The duration of the Ca(2+) responses in mutant astrocytes was significantly reduced when compared with values observed in control cells. We also show that the reduced Ca(2+) responses are probably due to a reduction in capacitative Ca(2+) entry (2.3-fold). Results suggest that altered Ca(2+) signaling could be a central mechanism in the development of INAD pathology.
Project description:BackgroundInfantile neuroaxonal dystrophy (INAD) is an ultra-rare early-onset autosomal recessive neurodegenerative disorder due to PLA2G6 variants. The clinical symptoms of INAD patients display considerable diversity, and many PLA2G6 variants are still not thoroughly investigated in relation to their associated clinical presentations.Case descriptionA 16-month-old boy was admitted to our hospital due to regression of acquired motor and speech abilities that had persisted for 4 months. The patient was born to a healthy consanguineous couple after 41 weeks of pregnancy and natural delivery. Before 12 months old, he had normal motor development milestones. On admission, he also showed astasia-abasia, weakness of distal muscles, and diminished patellar tendon reflex. Brain magnetic resonance imaging (MRI) revealed cerebellar atrophy. Auditory brainstem response (ABR) indicated moderately severe hearing loss. With chromosome microarray analysis (CMA), we identified several copy number-neutral regions of runs of homozygosity (ROH) in the patient. Whole-exome sequencing (WES) further revealed that the patient harbored a homozygous missense variant NM_003560.2: c.1778C>T, p.Pro593Leu (rs1451486649) in the PLA2G6 gene. In the patient's asymptomatic parents and brother, the PLA2G6 c.1778C>T variant stayed in heterozygous status as confirmed by Sanger sequencing. The patient was finally diagnosed with INAD.ConclusionsWe report an INAD child with a rare PLA2G6 c.1778C>T homozygous missense variant and associated clinical symptoms. The family-based cosegregation analysis reveals that the PLA2G6 c.1778C>T homozygous variant contributes to the pathogenesis of INAD.
Project description:BackgroundInfantile neuroaxonal dystrophy (INAD) is a rapidly progressive neurodegenerative disorder of early onset causing premature death. It results from biallelic pathogenic variants in PLA2G6, which encodes a calcium-independent phospholipase A2.ObjectiveWe aim to outline the natural history of INAD and provide a comprehensive description of its clinical, radiological, laboratory, and molecular findings.Materials and methodsWe comprehensively analyzed the charts of 28 patients: 16 patients from Riyadh, Saudi Arabia, 8 patients from North and South America and 4 patients from Europe with a molecularly confirmed diagnosis of PLA2G6-associated neurodegeneration (PLAN) and a clinical history consistent with INAD.ResultsIn our cohort, speech impairment and loss of gross motor milestones were the earliest signs of the disease. As the disease progressed, loss of fine motor milestones and bulbar dysfunction were observed. Temporo-frontal function was among the last of the milestones to be lost. Appendicular spastic hypertonia, axial hypotonia, and hyperreflexia were common neurological findings. Other common clinical findings include nystagmus (60.7%), seizures (42.9%), gastrointestinal disease (42.9%), skeletal deformities (35.7%), and strabismus (28.6%). Cerebellar atrophy and elevations in serum AST and LDH levels were consistent features of INAD. There was a statistically significant difference when comparing patients with non-sense/truncating variants compared with missense/in-frame deletions in the time of initial concern (p = 0.04), initial loss of language (p = 0.001), initial loss of fine motor skills (p = 0.009), and initial loss of bulbar skills (p = 0.007).ConclusionINAD is an ultra-rare neurodegenerative disorder that presents in early childhood, with a relentlessly progressive clinical course. Knowledge of the natural history of INAD may serve as a resource for healthcare providers to develop a targeted care plan and may facilitate the design of clinical trials to treat this disease.