Unknown

Dataset Information

0

Magnetic domains and domain wall pinning in atomically thin CrBr3 revealed by nanoscale imaging.


ABSTRACT: The emergence of atomically thin van der Waals magnets provides a new platform for the studies of two-dimensional magnetism and its applications. However, the widely used measurement methods in recent studies cannot provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to explore the rich properties of magnetic domains and spin textures. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains and study their dynamics in atomically thin CrBr3. By controlling the magnetic domain evolution as a function of magnetic field, we find that the pinning effect is a dominant coercivity mechanism and determine the magnetization of a CrBr3 bilayer to be about 26 Bohr magnetons per square nanometer. The high spatial resolution of this technique enables imaging of magnetic domains and allows to locate the sites of defects that pin the domain walls and nucleate the reverse domains. Our work highlights scanning nitrogen-vacancy center magnetometry as a quantitative probe to explore nanoscale features in two-dimensional magnets.

SUBMITTER: Sun QC 

PROVIDER: S-EPMC8012586 | biostudies-literature | 2021 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Magnetic domains and domain wall pinning in atomically thin CrBr<sub>3</sub> revealed by nanoscale imaging.

Sun Qi-Chao QC   Song Tiancheng T   Anderson Eric E   Brunner Andreas A   Förster Johannes J   Shalomayeva Tetyana T   Taniguchi Takashi T   Watanabe Kenji K   Gräfe Joachim J   Stöhr Rainer R   Xu Xiaodong X   Wrachtrup Jörg J  

Nature communications 20210331 1


The emergence of atomically thin van der Waals magnets provides a new platform for the studies of two-dimensional magnetism and its applications. However, the widely used measurement methods in recent studies cannot provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to explore the rich properties of magnetic domains and spin textures. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nit  ...[more]

Similar Datasets

| S-EPMC9331157 | biostudies-literature
| S-EPMC6895227 | biostudies-literature
| S-EPMC7145836 | biostudies-literature
| S-EPMC9085848 | biostudies-literature
| S-EPMC5833011 | biostudies-literature
| S-EPMC10133296 | biostudies-literature
| S-EPMC10435511 | biostudies-literature
| S-EPMC7511911 | biostudies-literature
| S-EPMC8505440 | biostudies-literature
| S-EPMC9508186 | biostudies-literature