Improved Protein Model Quality Assessment By Integrating Sequential And Pairwise Features Using Deep Learning.
Ontology highlight
ABSTRACT: Accurately estimating protein model quality in the absence of experimental structure is not only important for model evaluation and selection, but also useful for model refinement. Progress has been steadily made by introducing new features and algorithms (especially deep neural networks), but the accuracy of quality assessment (QA) is still not very satisfactory, especially local QA on hard protein targets. We propose a new single-model-based QA method ResNetQA for both local and global quality assessment. Our method predicts model quality by integrating sequential and pairwise features using a deep neural network composed of both 1 D and 2 D convolutional residual neural networks (ResNet). The 2 D ResNet module extracts useful information from pairwise features such as model-derived distance maps, co-evolution information, and predicted distance potential from sequences. The 1 D ResNet is used to predict local (global) model quality from sequential features and pooled pairwise information generated by 2 D ResNet. Tested on the CASP12 and CASP13 datasets, our experimental results show that our method greatly outperforms existing state-of-the-art methods. Our ablation studies indicate that the 2 D ResNet module and pairwise features play an important role in improving model quality assessment. https://github.com/AndersJing/ResNetQA. Supplementary data are available at Bioinformatics online.
SUBMITTER: Jing X
PROVIDER: S-EPMC8016469 | biostudies-literature | 2020 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA