Project description:The current art image classification methods have low recall and accuracy rate issues . To improve the classification performance of art images, a new adaptive classification method is designed employing multi-scale convolutional neural networks (CNNs). Firstly, the multi-scale Retinex algorithm with color recovery is used to complete the enhancement processing of art images. Then the extreme pixel ratio is utilized to evaluate the image quality and obtain the art image that can be analyzed. Afterward, edge detection technology is implemented to extract the key features in the image and use them as initial values of the item to be trained in the classification model. Finally, a multi-scale convolutional neural network (CNN) is constructed by using extended convolutions, and the characteristics of each level network are set. The decision fusion method based on maximum output probability is employed to calculate different subclassifies' probabilities and determine the final category of an input image to realize the art image adaptive classification. The experimental results show that the proposed method can effectively improve the recall rate and precision rate of art images and obtain reliable image classification results.
Project description:Sleep stage classification is essential for sleep assessment and disease diagnosis. Although previous attempts to classify sleep stages have achieved high classification performance, several challenges remain open: 1) How to effectively utilize time-varying spatial and temporal features from multi-channel brain signals remains challenging. Prior works have not been able to fully utilize the spatial topological information among brain regions. 2) Due to the many differences found in individual biological signals, how to overcome the differences of subjects and improve the generalization of deep neural networks is important. 3) Most deep learning methods ignore the interpretability of the model to the brain. To address the above challenges, we propose a multi-view spatial-temporal graph convolutional networks (MSTGCN) with domain generalization for sleep stage classification. Specifically, we construct two brain view graphs for MSTGCN based on the functional connectivity and physical distance proximity of the brain regions. The MSTGCN consists of graph convolutions for extracting spatial features and temporal convolutions for capturing the transition rules among sleep stages. In addition, attention mechanism is employed for capturing the most relevant spatial-temporal information for sleep stage classification. Finally, domain generalization and MSTGCN are integrated into a unified framework to extract subject-invariant sleep features. Experiments on two public datasets demonstrate that the proposed model outperforms the state-of-the-art baselines.
Project description:Sequence classification plays an important role in metagenomics studies. We assess the deep neural network approach for fungal sequence classification as it has emerged as a successful paradigm for big data classification and clustering. Two deep learning-based classifiers, a convolutional neural network (CNN) and a deep belief network (DBN) were trained using our recently released barcode datasets. Experimental results show that CNN outperformed the traditional BLAST classification and the most accurate machine learning based Ribosomal Database Project (RDP) classifier on datasets that had many of the labels present in the training datasets. When classifying an independent dataset namely the "Top 50 Most Wanted Fungi", CNN and DBN assigned less sequences than BLAST. However, they could assign much more sequences than the RDP classifier. In terms of efficiency, it took the machine learning classifiers up to two seconds to classify a test dataset while it was 53 s for BLAST. The result of the current study will enable us to speed up the taxonomic assignments for the fungal barcode sequences generated at our institute as ~ 70% of them still need to be validated for public release. In addition, it will help to quickly provide a taxonomic profile for metagenomics samples.
Project description:In retinoblastoma, accurate segmentation of ocular structure and tumor tissue is important when working towards personalized treatment. This retrospective study serves to evaluate the performance of multi-view convolutional neural networks (MV-CNNs) for automated eye and tumor segmentation on MRI in retinoblastoma patients. Forty retinoblastoma and 20 healthy-eyes from 30 patients were included in a train/test (N = 29 retinoblastoma-, 17 healthy-eyes) and independent validation (N = 11 retinoblastoma-, 3 healthy-eyes) set. Imaging was done using 3.0 T Fast Imaging Employing Steady-state Acquisition (FIESTA), T2-weighted and contrast-enhanced T1-weighted sequences. Sclera, vitreous humour, lens, retinal detachment and tumor were manually delineated on FIESTA images to serve as a reference standard. Volumetric and spatial performance were assessed by calculating intra-class correlation (ICC) and dice similarity coefficient (DSC). Additionally, the effects of multi-scale, sequences and data augmentation were explored. Optimal performance was obtained by using a three-level pyramid MV-CNN with FIESTA, T2 and T1c sequences and data augmentation. Eye and tumor volumetric ICC were 0.997 and 0.996, respectively. Median [Interquartile range] DSC for eye, sclera, vitreous, lens, retinal detachment and tumor were 0.965 [0.950-0.975], 0.847 [0.782-0.893], 0.975 [0.930-0.986], 0.909 [0.847-0.951], 0.828 [0.458-0.962] and 0.914 [0.852-0.958], respectively. MV-CNN can be used to obtain accurate ocular structure and tumor segmentations in retinoblastoma.
Project description:Auto-detection of cerebral aneurysms via convolutional neural network (CNN) is being increasingly reported. However, few studies to date have accurately predicted the risk, but not the diagnosis itself. We developed a multi-view CNN for the prediction of rupture risk involving small unruptured intracranial aneurysms (UIAs) based on three-dimensional (3D) digital subtraction angiography (DSA). The performance of a multi-view CNN-ResNet50 in accurately predicting the rupture risk (high vs. non-high) of UIAs in the anterior circulation measuring less than 7 mm in size was compared with various CNN architectures (AlexNet and VGG16), with similar type but different layers (ResNet101 and ResNet152), and single image-based CNN (single-view ResNet50). The sensitivity, specificity, and overall accuracy of risk prediction were estimated and compared according to CNN architecture. The study included 364 UIAs in training and 93 in test datasets. A multi-view CNN-ResNet50 exhibited a sensitivity of 81.82 (66.76-91.29)%, a specificity of 81.63 (67.50-90.76)%, and an overall accuracy of 81.72 (66.98-90.92)% for risk prediction. AlexNet, VGG16, ResNet101, ResNet152, and single-view CNN-ResNet50 showed similar specificity. However, the sensitivity and overall accuracy were decreased (AlexNet, 63.64% and 76.34%; VGG16, 68.18% and 74.19%; ResNet101, 68.18% and 73.12%; ResNet152, 54.55% and 72.04%; and single-view CNN-ResNet50, 50.00% and 64.52%) compared with multi-view CNN-ResNet50. Regarding F1 score, it was the highest in multi-view CNN-ResNet50 (80.90 (67.29-91.81)%). Our study suggests that multi-view CNN-ResNet50 may be feasible to assess the rupture risk in small-sized UIAs.
Project description:The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of this data set. We find that more than 94% of the test images can be correctly labeled, irrespective of their experimental origin. Because crystal recognition is key to high-density screening and the systematic analysis of crystallization experiments, this approach opens the door to both industrial and fundamental research applications.
Project description:PurposeThe quantitative analysis of contrast-enhanced Computed Tomography Angiography (CTA) is essential to assess aortic anatomy, identify pathologies, and perform preoperative planning in vascular surgery. To overcome the limitations given by manual and semi-automatic segmentation tools, we apply a deep learning-based pipeline to automatically segment the CTA scans of the aortic lumen, from the ascending aorta to the iliac arteries, accounting for 3D spatial coherence.MethodsA first convolutional neural network (CNN) is used to coarsely segment and locate the aorta in the whole sub-sampled CTA volume, then three single-view CNNs are used to effectively segment the aortic lumen from axial, sagittal, and coronal planes under higher resolution. Finally, the predictions of the three orthogonal networks are integrated to obtain a segmentation with spatial coherence.ResultsThe coarse segmentation performed to identify the aortic lumen achieved a Dice coefficient (DSC) of 0.92 ± 0.01. Single-view axial, sagittal, and coronal CNNs provided a DSC of 0.92 ± 0.02, 0.92 ± 0.04, and 0.91 ± 0.02, respectively. Multi-view integration provided a DSC of 0.93 ± 0.02 and an average surface distance of 0.80 ± 0.26 mm on a test set of 10 CTA scans. The generation of the ground truth dataset took about 150 h and the overall training process took 18 h. In prediction phase, the adopted pipeline takes around 25 ± 1 s to get the final segmentation.ConclusionThe achieved results show that the proposed pipeline can effectively localize and segment the aortic lumen in subjects with aneurysm.
Project description:PurposeTo investigate whether multi-view convolutional neural networks can improve a fully automated lymph node detection system for pelvic MR Lymphography (MRL) images of patients with prostate cancer.MethodsA fully automated computer-aided detection (CAD) system had been previously developed to detect lymph nodes in MRL studies. The CAD system was extended with three types of 2D multi-view convolutional neural networks (CNN) aiming to reduce false positives (FP). A 2D multi-view CNN is an efficient approximation of a 3D CNN, and three types were evaluated: a 1-view, 3-view, and 9-view 2D CNN. The three deep learning CNN architectures were trained and configured on retrospective data of 240 prostate cancer patients that received MRL images as the standard of care between January 2008 and April 2010. The MRL used ferumoxtran-10 as a contrast agent and comprised at least two imaging sequences: a 3D T1-weighted and a 3D T2*-weighted sequence. A total of 5089 lymph nodes were annotated by two expert readers, reading in consensus. A first experiment compared the performance with and without CNNs and a second experiment compared the individual contribution of the 1-view, 3-view, or 9-view architecture to the performance. The performances were visually compared using free-receiver operating characteristic (FROC) analysis and statistically compared using partial area under the FROC curve analysis. Training and analysis were performed using bootstrapped FROC and 5-fold cross-validation.ResultsAdding multi-view CNNs significantly (p < 0.01) reduced false positive detections. The 3-view and 9-view CNN outperformed (p < 0.01) the 1-view CNN, reducing FP from 20.6 to 7.8/image at 80% sensitivity.ConclusionMulti-view convolutional neural networks significantly reduce false positives in a lymph node detection system for MRL images, and three orthogonal views are sufficient. At the achieved level of performance, CAD for MRL may help speed up finding lymph nodes and assessing them for potential metastatic involvement.
Project description:Early and precise diagnosis of craniosynostosis (CSO), which involves premature fusion of cranial sutures in infants, is crucial for effective treatment. Although computed topography offers detailed imaging, its high radiation poses risks, especially to children. Therefore, we propose a deep-learning model for CSO and suture-line classification using 2D cranial X-rays that minimises radiation-exposure risks and offers reliable diagnoses. We used data comprising 1,047 normal and 277 CSO cases from 2006 to 2023. Our approach integrates X-ray-marker removal, head-pose standardisation, skull-cropping, and fine-tuning modules for CSO and suture-line classification using convolution neural networks (CNNs). It enhances the diagnostic accuracy and efficiency of identifying CSO from X-ray images, offering a promising alternative to traditional methods. Four CNN backbones exhibited robust performance, with F1-scores exceeding 0.96 and sensitivity and specificity exceeding 0.9, proving the potential for clinical applications. Additionally, preprocessing strategies further enhanced the accuracy, demonstrating the highest F1-scores, precision, and specificity. A qualitative analysis using gradient-weighted class activation mapping illustrated the focal points of the models. Furthermore, the suture-line classification model distinguishes five suture lines with an accuracy of > 0.9. Thus, the proposed approach can significantly reduce the time and labour required for CSO diagnosis, streamlining its management in clinical settings.
Project description:BackgroundThe global age-adjusted mortality rate related to atrial fibrillation (AF) registered a rapid growth in the last four decades, i.e., from 0.8 to 1.6 and 0.9 to 1.7 per 100,000 for men and women during 1990-2010, respectively. In this context, this study uses convolutional neural networks for classifying (diagnosing) AF, employing electrocardiogram data in a general hospital.MethodsData came from Anam Hospital in Seoul, Korea, with 20,000 unique patients (10,000 normal sinus rhythm and 10,000 AF). 30 convolutional neural networks were applied and compared for the diagnosis of the normal sinus rhythm vs. AF condition: 6 Alex networks with 5 convolutional layers, 3 fully connected layers and the number of kernels changing from 3 to 256; and 24 residual networks with the number of residuals blocks (or kernels) varying from 8 to 2 (or 64 to 2).ResultsIn terms of the accuracy, the best Alex network was one with 24 initial kernels (i.e., kernels in the first layer), 5,268,818 parameters and the training time of 89 s (0.997), while the best residual network was one with 6 residual blocks, 32 initial kernels, 248,418 parameters and the training time of 253 s (0.999). In general, the performance of the residual network improved as the number of its residual blocks (its depth) increased.ConclusionFor AF diagnosis, the residual network might be a good model with higher accuracy and fewer parameters than its Alex-network counterparts.