Project description:In a severe epidemic such as the COVID-19 pandemic, social distancing can be a vital tool to stop the spread of the disease and save lives. However, social distancing may induce profound negative social or economic impacts as well. How to optimize social distancing is a serious social, political, as well as public health issue yet to be resolved. This work investigates social distancing with a focus on how every individual reacts to an epidemic, what role he/she plays in social distancing, and how every individual's decision contributes to the action of the population and vice versa. Social distancing is thus modeled as a population game, where every individual makes decision on how to participate in a set of social activities, some with higher frequencies while others lower or completely avoided, to minimize his/her social contacts with least possible social or economic costs. An optimal distancing strategy is then obtained when the game reaches an equilibrium. The game is simulated with various realistic restraints including (i) when the population is distributed over a social network, and the decision of each individual is made through the interactions with his/her social neighbors; (ii) when the individuals in different social groups such as children vs. adults or the vaccinated vs. unprotected have different distancing preferences; (iii) when leadership plays a role in decision making, with a certain number of leaders making decisions while the rest of the population just follow. The simulation results show how the distancing game is played out in each of these scenarios, reveal the conflicting yet cooperative nature of social distancing, and shed lights on a self-organizing, bottom-up perspective of distancing practices.
Project description:Cemeteries are potential environmental reservoirs of pathogenic microorganisms from organic matter decomposition. This study aimed to characterize the microbial contamination in three cemeteries, and more specifically in grave diggers' facilities. One active sampling method (impingement method) and several passive sampling methods (swabs, settled dust, settled dust filters and electrostatic dust cloths-EDC) were employed. The molecular detection of Aspergillus sections and SARS-CoV-2, as well as mycotoxin analysis, screening of azole resistance, and cytotoxicity measurement were also conducted. Total bacteria contamination was 80 CFU·m-2 in settled dust samples, reached 849 CFU·m-2 in EDC and 20,000 CFU·m-2 in swabs, and ranged from 5000 to 10,000 CFU·m-2 in filters. Gram-negative bacteria (VRBA) were only observed in in settled dust samples (2.00 × 105 CFU·m-2). Regarding Aspergillus sp., the highest counts were obtained in DG18 (18.38%) and it was not observed in azole-supplemented SDA media. SARS-CoV-2 and the targeted Aspergillus sections were not detected. Mycophenolic acid was detected in one settled dust sample. Cytotoxic effects were observed for 94.4% filters and 5.6% EDC in A549 lung epithelial cells, and for 50.0% filters and 5.6% EDC in HepG2 cells. Future studies are needed in this occupational setting to implement more focused risk management measures.
Project description:This state-of-the art manuscript highlights our current understanding of maternal immunization-the practice of vaccinating pregnant women to confer protection on them as well as on their young infants, and thereby reduce vaccine-preventable morbidity and mortality. Advances in our understanding of the immunologic processes that undergird a normal pregnancy, studies from vaccines currently available and recommended for pregnant women, and vaccines for administration in special situations are beginning to build the case for safe scale-up of maternal immunization. In addition to well-known diseases, new diseases are emerging which pose threats. Several new vaccines are currently under development and increasingly include pregnant women. In this manuscript, targeted at clinicians, vaccinologists, scientists, public health practitioners, and policymakers, we also outline key considerations around maternal immunization introduction and delivery, discuss noninfectious horizons for maternal immunization, and provide a framework for the clinician faced with immunizing a pregnant woman.
Project description:We show the fractionation of whole blood components and isolation of blood plasma with no dilution by using a continuous-flow deterministic array that separates blood components by their hydrodynamic size, independent of their mass. We use the technology we developed of deterministic arrays which separate white blood cells, red blood cells, and platelets from blood plasma at flow velocities of 1,000 microm/sec and volume rates up to 1 microl/min. We verified by flow cytometry that an array using focused injection removed 100% of the lymphocytes and monocytes from the main red blood cell and platelet stream. Using a second design, we demonstrated the separation of blood plasma from the blood cells (white, red, and platelets) with virtually no dilution of the plasma and no cellular contamination of the plasma.
Project description:The town of Ascona in Switzerland, nestled on the northern shore of Lago Maggiore, hosted the 112 participants in the first systems biology meeting focused on developmental biology. The EMBO workshop was held between 16 and 20 August and brought together a multidisciplinary group of scientists who use systems approaches to understand how the size and shape of multicellular organisms and organs are determined.
Project description:Split-hand/split-foot malformation is a rare limb malformation with median clefts of the hands and feet and aplasia/hypoplasia of the phalanges, metacarpals and metatarsals. When present as an isolated anomaly, it is usually inherited as an autosomal dominant form. We report a case of autosomal recessive inheritance and discuss the antenatal diagnosis, genetic counseling and treatment for the malformation.