Unknown

Dataset Information

0

Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Can Extensively Differentiate to Tyrosine-Hydroxylase-Expressing Dopamine-Secreting Neurons.


ABSTRACT: Hair-follicle-associated pluripotent (HAP) stem cells are located in the bulge area of hair follicles from mice and humans and have been shown to differentiate to neurons, glia, keratinocytes, smooth muscle cells, melanocytes and beating cardiac muscle cells in vitro. Subsequently, we demonstrated that HAP stem cells could effect nerve and spinal-cord regeneration in mouse models, differentiating to Schwann cells and neurons in this process. HAP stem cells can be banked by cryopreservation and preserve their ability to differentiate. In the present study, we demonstrated that mouse HAP stem cells cultured in neural-induction medium can extensively differentiate to dopaminergic neurons, which express tyrosine hydroxylase and secrete dopamine. These results indicate that the dopaminergic neurons differentiated from HAP stem cells may be useful in the future to improve the symptoms of Parkinson's disease in the clinic.

SUBMITTER: Yamane M 

PROVIDER: S-EPMC8069047 | biostudies-literature | 2021 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Can Extensively Differentiate to Tyrosine-Hydroxylase-Expressing Dopamine-Secreting Neurons.

Yamane Michiko M   Takaoka Nanako N   Obara Koya K   Shirai Kyoumi K   Aki Ryoichi R   Hamada Yuko Y   Arakawa Nobuko N   Hoffman Robert M RM   Amoh Yasuyuki Y  

Cells 20210410 4


Hair-follicle-associated pluripotent (HAP) stem cells are located in the bulge area of hair follicles from mice and humans and have been shown to differentiate to neurons, glia, keratinocytes, smooth muscle cells, melanocytes and beating cardiac muscle cells in vitro. Subsequently, we demonstrated that HAP stem cells could effect nerve and spinal-cord regeneration in mouse models, differentiating to Schwann cells and neurons in this process. HAP stem cells can be banked by cryopreservation and p  ...[more]

Similar Datasets

| S-EPMC4614865 | biostudies-other
| S-EPMC5736337 | biostudies-literature
| S-EPMC10817212 | biostudies-literature
| S-EPMC9729176 | biostudies-literature
| S-EPMC4845933 | biostudies-literature
| S-EPMC9838830 | biostudies-literature
| S-EPMC5053548 | biostudies-literature
| S-EPMC5638363 | biostudies-literature
| S-EPMC8794105 | biostudies-literature
| S-EPMC5111897 | biostudies-literature