Project description:Cyclin-dependent kinases (CDKs) contribute to the cancer hallmarks of uncontrolled proliferation and increased survival. As a result, over the last two decades substantial efforts have been directed towards identification and development of pharmaceutical CDK inhibitors. Insights into the biological consequences of CDK inhibition in specific tumor types have led to the successful development of CDK4/6 inhibitors as treatments for certain types of breast cancer. More recently, a new generation of pharmaceutical inhibitors of CDK enzymes that regulate the transcription of key oncogenic and pro-survival proteins, including CDK9, have entered clinical development. Here, we provide the first disclosure of the chemical structure of fadraciclib (CYC065), a CDK inhibitor and clinical candidate designed by further optimization from the aminopurine scaffold of seliciclib. We describe its synthesis and mechanistic characterization. Fadraciclib exhibits improved potency and selectivity for CDK2 and CDK9 compared to seliciclib, and also displays high selectivity across the kinome. We show that the mechanism of action of fadraciclib is consistent with potent inhibition of CDK9-mediated transcription, decreasing levels of RNA polymerase II C-terminal domain serine 2 phosphorylation, the pro-survival protein Myeloid Cell Leukemia 1 (MCL1) and MYC oncoprotein, and inducing rapid apoptosis in cancer cells. This cellular potency and mechanism of action translate to promising anti-cancer activity in human leukemia mouse xenograft models. Studies of leukemia cell line sensitivity identify mixed lineage leukemia (MLL) gene status and the level of B-cell lymphoma 2 (BCL2) family proteins as potential markers for selection of patients with greater sensitivity to fadraciclib. We show that the combination of fadraciclib with BCL2 inhibitors, including venetoclax, is synergistic in leukemic cell models, as predicted from simultaneous inhibition of MCL1 and BCL2 pro-survival pathways. Fadraciclib preclinical pharmacology data support its therapeutic potential in CDK9- or CDK2-dependent cancers and as a rational combination with BCL2 inhibitors in hematological malignancies. Fadraciclib is currently in Phase 1 clinical studies in patients with advanced solid tumors (NCT02552953) and also in combination with venetoclax in patients with relapsed or refractory chronic lymphocytic leukemia (CLL) (NCT03739554) and relapsed refractory acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) (NCT04017546).
Project description:Aberrant activation of stimulator of interferon genes (STING) is tightly associated with multiple types of disease, including cancer, infection, and autoimmune diseases. However, the development of STING modulators for the therapy of STING-related diseases is still an unmet clinical need. We employed a high-throughput screening approach based on the interaction of small-molecule chemical compounds with recombinant STING protein to identify functional STING modulators. Intriguingly, the cyclin-dependent protein kinase (CDK) inhibitor Palbociclib was found to directly bind STING and inhibit its activation in both mouse and human cells. Mechanistically, Palbociclib targets Y167 of STING to block its dimerization, its binding with cyclic dinucleotides, and its trafficking. Importantly, Palbociclib alleviates autoimmune disease features induced by dextran sulphate sodium or genetic ablation of three prime repair exonuclease 1 (Trex1) in mice in a STING-dependent manner. Our work identifies Palbociclib as a novel pharmacological inhibitor of STING that abrogates its homodimerization and provides a basis for the fast repurposing of this Food and Drug Administration-approved drug for the therapy of autoinflammatory diseases.
Project description:Aberrant activation of stimulator of interferon genes (STING) is tightly associated with multiple types of disease, including cancer, infection and autoimmune diseases. However, the development of STING modulators for the therapy of STING-related diseases is still an unmet need. We employed a high throughput screening approach based on the interaction of small molecule chemical compounds with recombinant STING protein to identify functional STING modulators. Intriguingly, the cyclin-dependent protein kinases (CDKs) inhibitor Palbociclib was found to directly bind STING and inhibit its activation in both mouse and human cells. Mechanistically, Palbociclib targets Y167 of STING to block its dimerization, its binding with cyclic dinucleotides and its trafficking. Importantly, Palbociclib alleviates autoimmune disease features induced by dextran sulphate sodium or genetic ablation of three prime repair exonuclease 1 (Trex1) in mice in a STING-dependent manner. Our work identifies Palbociclib as a novel pharmacological inhibitor of STING that abrogates its homodimerization and provides a basis for the fast repurposing of this Food and Drug Administration-approved drug for the therapy of autoinflammatory diseases.
Project description:Front-line therapy for advanced and metastatic hormone receptor positive (HR+), HER2 negative (HER-) advanced or metastatic breast cancer (mBC) is endocrine therapy with a CDK4/6 inhibitor (CDK4/6i). The introduction of CDK4/6i has dramatically improved progression-free survival and, in some cases, overall survival. The optimal sequencing of post-front-line therapy must be personalized to patients' overall health and tumor biology. This paper reviews approved next lines of therapy for mBC and available data on efficacy post-progression on CDK4/6i. Given the success of endocrine front-line therapy, there has been an expansion in therapies under clinical investigation targeting the estrogen receptor in novel ways. There are also clinical trials ongoing attempting to overcome CDK4/6i resistance. This paper will review these drugs under investigation, review efficacy data when possible, and provide descriptions of the adverse events reported.
Project description:Tissue-specific regulation of WNT and YAP/TAZ signaling is critical for optimal organismal growth, development, and maintenance. Uncontrolled activity often leads to developmental abnormalities and aggressive cancers. Tankyrase (TNKS) is a poly-ADP-ribose polymerase (PARP) that controls both WNT and YAP/TAZ signaling. However, it is unclear how TNKS activity is regulated in a tissue and cell-type specific manner. Here, we identified the previously uncharacterized prostate-associated gene 4 (PAGE4) as a tissue-specific TNKS inhibitor. Structural and biochemical studies revealed that mechanistically PAGE4 inhibits TNKS through hijacking TNKS substrate binding pockets leading to the stabilization of TNKS substrates. In vitro cell culture and in vivo zebrafish and transgenic mouse model studies showed that PAGE4 is a potent inhibitor of TNKS and WNT signaling. Interestingly, PAGE4 is physiologically restricted to expression in select tissues and cell types, including WNT producing prostatic fibroblasts where spatiotemporal regulation of WNT signaling is critical for proper organ development. Surprisingly, PAGE4 is aberrantly expressed in hepatocellular carcinomas that bypass TNKS through mutant CTNNB1 driven WNT signaling. In vitro and in vivo tumorigenic studies revealed that PAGE4 initially function as a tumor suppressor through inhibition of WNT signaling, but upon CTNNB1 mutation becomes an oncogenic driver through YAP/TAZ signaling. Thus, we establish PAGE4 as a robust tissue-specific TNKS inhibitor that physiologically coordinates developmental WNT signaling, but genetic aberration during cancer progression re-wire PAGE4 into pro-oncogenic YAP/TAZ pathway.
Project description:Glioma stem cells (GSCs) are tumour initiating cells which contribute to treatment resistance, temozolomide (TMZ) chemotherapy and radiotherapy, in glioblastoma (GBM), the most aggressive adult brain tumour. A major contributor to the uncontrolled tumour cell proliferation in GBM is the hyper activation of cyclin-dependent kinases (CDKs). Due to resistance to standard of care, GBMs relapse in almost all patients. Targeting GSCs using transcriptional CDK inhibitors, CYC065 and THZ1 is a potential novel treatment to prevent relapse of the tumour. TCGA-GBM data analysis has shown that the GSC markers, CD133 and CD44 were significantly upregulated in GBM patient tumours compared to non-tumour tissue. CD133 and CD44 stem cell markers were also expressed in gliomaspheres derived from recurrent GBM tumours. Light Sheet Florescence Microscopy (LSFM) further revealed heterogeneous expression of these GSC markers in gliomaspheres. Gliomaspheres from recurrent tumours were highly sensitive to transcriptional CDK inhibitors, CYC065 and THZ1 and underwent apoptosis while being resistant to TMZ. Apoptotic cell death in GSC subpopulations and non-stem tumour cells resulted in sphere disruption. Collectively, our study highlights the potential of these novel CKIs to induce cell death in GSCs from recurrent tumours, warranting further clinical investigation.
Project description:The endogenous phospholipid lysophosphatidic acid (LPA) regulates fundamental cellular processes such as proliferation, survival, motility, and invasion implicated in homeostatic and pathological conditions. Hence, delineation of the full range of molecular mechanisms by which LPA exerts its broad effects is essential. We report avid binding of LPA to the receptor for advanced glycation end products (RAGE), a member of the immunoglobulin superfamily, and mapping of the LPA binding site on this receptor. In vitro, RAGE was required for LPA-mediated signal transduction in vascular smooth muscle cells and C6 glioma cells, as well as proliferation and migration. In vivo, the administration of soluble RAGE or genetic deletion of RAGE mitigated LPA-stimulated vascular Akt signaling, autotaxin/LPA-driven phosphorylation of Akt and cyclin D1 in the mammary tissue of transgenic mice vulnerable to carcinogenesis, and ovarian tumor implantation and development. These findings identify novel roles for RAGE as a conduit for LPA signaling and suggest targeting LPA-RAGE interaction as a therapeutic strategy to modify the pathological actions of LPA.
Project description:During intravasation, circulating tumor cells (CTCs) detach from the epithelium of origin and begin the epithelial-to-mesenchymal transition (EMT) process, where they lose epithelial features and pass through the endothelium to enter circulation. Although detachment from the extracellular matrix is a strong source of metabolic stress, which induces anoikis, CTCs can survive. Recently, the tumor suppressor liver kinase B1 (LKB1) has gained attention for its role as a proto-oncogene in restoring the correct ATP/AMP ratio during metabolic stress. The aim of this study was to assess LKB1 expression in epithelial-negative CTCs isolated from patients with metastatic breast cancer and to characterize its possible association with EMT and stemness features. Transcriptome analysis of EpCAM-negative CTCs indicated that over 25% of patients showed enhanced LKB1 levels, while almost 20% of patients showed enhanced levels of an EMT transcription factor known as ZEB1. Transcriptome and immunofluorescence analyses showed that patients with enhanced LKB1 were correspondingly ZEB1 negative, suggesting complementary activity for the two proteins. Only ZEB1 was significantly associated with cancer stem cell (CSC) markers. Neither LKB1 nor ZEB1 upregulation showed a correlation with clinical outcome, while enhanced levels of stemness-associated CD44 correlated with a lower progression-free and overall survival. Ex vivo models showed that MDA-MB-231, a mesenchymal tumor cell line, grew in suspension only if LKB1 was upregulated, but the MCF-7 epithelial cell line lost its ability to generate spheroids and colonies when LKB1 was inhibited, supporting the idea that LKB1 might be necessary for CTCs to overcome the absence of the extracellular matrix during the early phases of intravasation. If these preliminary results are confirmed, LKB1 will become a novel therapeutic target for eradicating metastasis-initiating CTCs from patients with primary breast cancer.
Project description:The proneural protein neurogenin (XNGNR1) drives differentiation of primary neurons in combination with the cyclin-dependent kinase (Cdk) inhibitor Xic1. Differentiation is inhibited by Notch signalling, resulting in a scattered neuronal distribution. Here we show that Notch signalling regulates the level of Xic1 transcription, yet this does not correlate with Notch's ability to perturb the cell cycle. Instead, Notch may regulate Xic1 levels to control its differentiation function directly, which is required in parallel with XNGNR1 to promote primary neurogenesis. Indeed, Notch-mediated repression of both XNGNR1 and Xic1 must be relieved for neuronal differentiation to occur. Interestingly, although Xic1 is required for XNGNR1-mediated neurogenesis, it is not required for XNGNR1-mediated upregulation of Delta, allowing establishment of the negative feedback loop involved in lateral inhibition. Therefore, Notch targets Cdk inhibitor expression to regulate differentiation of primary neurons, and its effects on the cell cycle may be of secondary importance.