Project description:Accumulating evidence suggests that Interleukin-33 (IL-33), a member of the IL-1 family, has crucial roles in tissue homeostasis and repair, type 2 immunity, inflammation, and viral infection. IL-33 is a novel contributing factor in tumorigenesis and plays a critical role in regulating angiogenesis and cancer progression in a variety of human cancers. The partially unraveled role of IL-33/ST2 signaling in gastrointestinal tract cancers is being investigated through the analysis of patients' samples and by studies in murine and rat models. In this review, we discuss the basic biology and mechanisms of release of the IL-33 protein and its involvement in gastrointestinal cancer onset and progression.
Project description:Coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in a global pandemic and a disruptive health crisis. COVID-19-related morbidity and mortality have been attributed to an exaggerated immune response. The role of complement activation and its contribution to illness severity is being increasingly recognized. Here, we summarize current knowledge about the interaction of coronaviruses with the complement system. We posit that (a) coronaviruses activate multiple complement pathways; (b) severe COVID-19 clinical features often resemble complementopathies; (c) the combined effects of complement activation, dysregulated neutrophilia, endothelial injury, and hypercoagulability appear to be intertwined to drive the severe features of COVID-19; (d) a subset of patients with COVID-19 may have a genetic predisposition associated with complement dysregulation; and (e) these observations create a basis for clinical trials of complement inhibitors in life-threatening illness.
Project description:The coronavirus disease 2019 (COVID-19) outbreak, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global ongoing pandemic. Timely, accurate and non-invasive SARS-CoV-2 detection in both symptomatic and asymptomatic patients, as well as determination of their immune status, will facilitate effective large-scale pandemic control measures to prevent the spread of COVID-19. Saliva is a biofluid whose anatomical source and location is of particularly strategic relevance to COVID-19 transmission and monitoring. This review focuses on the role of saliva as both a foe (a common mode of viral transmission via salivary droplets and potentially aerosols) and a friend (as a non-invasive diagnostic tool for viral detection and immune status surveillance) in combating COVID-19.
Project description:The aim of the present manuscript is to discuss on potential pros and cons of glucagon-like peptide-1 receptor agonists (GLP-1RAs) as glucose-lowering agents during COVID-19 pandemic, and what is more to evaluate them as potential candidates for the treatment of patients, affected by COVID-19 infection, with or even without diabetes mellitus type 2. Besides being important glucose-lowering agents, GLP-1RAs pose promising anti-inflammatory and anti-obesogenic properties, pulmonary protective effects, as well as beneficial impact on gut microbiome composition. Hence, taking everything previously mentioned into consideration, GLP-1RAs seem to be potential candidates for the treatment of patients, affected by COVID-19 infection, with or even without type 2 diabetes mellitus, as well as excellent antidiabetic (glucose-lowering) agents during COVID-19 pandemic times.
Project description:Since the start of COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more than 6 million people have lost their lives worldwide directly or indirectly. Despite intensified efforts to clarify the immunopathology of COVID-19, the key factors and processes that trigger an inflammatory storm and lead to severe clinical outcomes in patients remain unclear. As an inflammatory storm factor, IL-33 is an alarmin cytokine, which plays an important role in cell damage or infection. Recent studies have shown that serum IL-33 is upregulated in COVID-19 patients and is strongly associated with poor outcomes. Increased IL-33 levels in severe infections may result from an inflammatory storm caused by strong interactions between activated immune cells. However, the effects of IL-33 in COVID-19 and the underlying mechanisms remain to be fully elucidated. In this review, we systematically discuss the biological properties of IL-33 under pathophysiological conditions and its regulation of immune cells, including neutrophils, innate lymphocytes (ILCs), dendritic cells, macrophages, CD4+ T cells, Th17/Treg cells, and CD8+ T cells, in COVID-19 phagocytosis. The aim of this review is to explore the potential value of the IL-33/immune cell pathway as a new target for early diagnosis, monitoring of severe cases, and clinical treatment of COVID-19.
Project description:Viral infections cause substantial human morbidity and mortality, and are a significant health burden worldwide. Following a viral infection, the host may initiate complex antiviral immune responses to antagonize viral invasion and replication. However, proinflammatory antiviral immune responses pose a great threat to the host if not properly held in check. Interleukin (IL)-17 is a pleiotropic cytokine participating in a variety of physiological and pathophysiological conditions, including tissue integrity maintenance, cancer progression, autoimmune disease development and, more intriguingly, infectious diseases. Abundant evidence suggests that while IL-17 plays a crucial role in enhancing effective antiviral immune responses, it may also promote and exacerbate virus-induced illnesses. Accumulated experimental and clinical evidence has broadened our understanding of the seemingly paradoxical role of IL-17 in viral infections and suggests that IL-17-targeted immunotherapy may be a promising therapeutic option. Herein, we summarize current knowledge regarding the protective and pathogenic roles of IL-17 in viral infections, with emphasis on underlying mechanisms. The various and critical roles of IL-17 in viral infections necessitate the development of therapeutic strategies that are uniquely tailored to both the infectious agent and the infection environment.
Project description:The PGC1 family (Peroxisome proliferator-activated receptor γ (PPARγ) coactivators) of transcriptional coactivators are considered master regulators of mitochondrial biogenesis and function. The PGC1α isoform is expressed especially in metabolically active tissues, such as the liver, kidneys and brain, and responds to energy-demanding situations. Given the altered and highly adaptable metabolism of tumor cells, it is of interest to investigate PGC1α in cancer. Both high and low levels of PGC1α expression have been reported to be associated with cancer and worse prognosis, and PGC1α has been attributed with oncogenic as well as tumor suppressive features. Early in carcinogenesis PGC1α may be downregulated due to a protective anticancer role, and low levels likely reflect a glycolytic phenotype. We suggest mechanisms of PGC1α downregulation and how these might be connected to the increased cancer risk that obesity is now known to entail. Later in tumor progression PGC1α is often upregulated and is reported to contribute to increased lipid and fatty acid metabolism and/or a tumor cell phenotype with an overall metabolic plasticity that likely supports drug resistance as well as metastasis. We conclude that in cancer PGC1α is neither friend nor foe, but rather the obedient servant reacting to metabolic and environmental cues to benefit the tumor cell.