Project description:Natural killer (NK) cells belong to the innate immune system and contribute to protecting the host through killing of infected, foreign, stressed or transformed cells. Additionally, via cellular cross-talk, NK cells orchestrate antitumor immune responses. Hence, significant efforts have been undertaken to exploit the therapeutic properties of NK cells in cancer. Current strategies in preclinical and clinical development include adoptive transfer therapies, direct stimulation, recruitment of NK cells into the tumor microenvironment (TME), blockade of inhibitory receptors that limit NK cell functions, and therapeutic modulation of the TME to enhance antitumor NK cell function. In this Review, we introduce the NK cell-cancer cycle to highlight recent advances in NK cell biology and to discuss the progress and problems of NK cell-based cancer immunotherapies.
Project description:Neuroblastoma (NB) is the most common extracranial solid tumor in children and, in the high-risk group, has a 5-year mortality rate of ~50%. The high mortality rate and significant treatment-related morbidities associated with current standard of care therapies belie the critical need for more tolerable and effective treatments for this disease. While the monoclonal antibody dinutuximab has demonstrated the potential for immunotherapy to improve overall NB outcomes, the 5-year overall survival of high-risk patients has not yet substantially changed. The frequency and type of invariant natural killer T cells (iNKTs) and natural killer cells (NKs) has been associated with improved outcomes in several solid and liquid malignancies, including NB. Indeed, iNKTs and NKs inhibit tumor associated macrophages (TAMs) and myeloid derived suppressor cells (MDSCs), kill cancer stem cells (CSCs) and neuroblasts, and robustly secrete cytokines to recruit additional immune effectors. These capabilities, and promising pre-clinical and early clinical data suggest that iNKT- and NK-based therapies may hold promise as both stand-alone and combination treatments for NB. In this review we will summarize the biologic features of iNKTs and NKs that confer advantages for NB immunotherapy, discuss the barriers imposed by the NB tumor microenvironment, and examine the current state of such therapies in pre-clinical models and clinical trials.
Project description:Natural killer (NK)/T cell lymphoma (NKTCL) is a rare subtype of Epstein-Barr virus (EBV)-associated non-Hodgkin lymphoma characterized by poor clinical outcomes. It is more common in East Asian and Latin American countries. Despite the introduction of asparaginase/pegaspargase-based chemotherapy, the prognosis of patients with advanced NKTCL needs to be improved, and few salvage treatment options are available for relapsed/refractory patients who fail chemotherapy. Although many unknowns remain, novel treatment strategies to further improve outcomes are urgently needed. Immunotherapy has emerged and shown favorable antitumor activity in NKTCL, including monoclonal antibodies targeting immune checkpoint inhibitors, other receptors on the cellular membrane, and cellular immunotherapy, which could enhance immune cells attack on tumor cells. In this review, we provide an overview of recent immunotherapy in NKTCL, focusing on programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1), cytotoxic T lymphocyte-associated protein 4 (CTLA-4), chimeric antigen receptor (CAR) T cells, EBV-specific cytotoxic T lymphocytes, immunomodulatory agents, and other targeted agents, as well as the current progress and challenges in the field.
Project description:Invariant natural killer T (iNKT) cells are a small population of T lymphocytes that expresses an invariant T cell receptor with a unique specificity for glycolipid antigens. Their activation using the glycolipid α-galactosylceramide (α-GalCer) triggers innate and adaptive immune responses. The use of α-GalCer in preclinical models as a single antitumor treatment showed moderate effect, but its efficacy in cancer patients was less effective. In addition, this glycolipid induces long-term iNKT-cell anergy precluding the possibility of retreatment. Recently, the first murine iNKT-cell agonistic antibody, NKT14m, has been developed. Here, we analyzed, for the first time, the antitumor efficacy of NKT14m in a B-cell lymphoma model. In a therapeutic setting, a single dose of NKT14m had a moderate antitumor efficacy that was associated with an increase of IFN-γ producing iNKT cells even after a second dose of the NKT14m antibody. Importantly, the combination of a single dose of NKT14m with cyclophosphamide had a potent antitumor efficacy and long-lasting immunity in vivo. Our findings provide the first evidence of the in vivo antitumor efficacy of NKT14m antibody, showing that, either alone or in combination with chemotherapy, induces an effective antitumor response. These results open new opportunities for iNKT-cell mediated immunotherapy to treat B-cell lymphoma.
Project description:With the development of technologies that can transform immune cells into therapeutic modalities, immunotherapy has remarkably changed the current paradigm of cancer treatment in recent years. NK cells are components of the innate immune system that act as key regulators and exhibit a potent tumor cytolytic function. Unlike T cells, NK cells exhibit tumor cytotoxicity by recognizing non-self, without deliberate immunization or activation. Currently, researchers have developed various approaches to improve the number and anti-tumor function of NK cells. These approaches include the use of cytokines and Abs to stimulate the efficacy of NK cell function, adoptive transfer of autologous or allogeneic ex vivo expanded NK cells, establishment of homogeneous NK cell lines using the NK cells of patients with cancer or healthy donors, derivation of NK cells from induced pluripotent stem cells (iPSCs), and modification of NK cells with cutting-edge genetic engineering technologies to generate chimeric Ag receptor (CAR)-NK cells. Such NK cell-based immunotherapies are currently reported as being promising anti-tumor strategies that have shown enhanced functional specificity in several clinical trials investigating malignant tumors. Here, we summarize the recent advances in NK cell-based cancer immunotherapies that have focused on providing improved function through the use of the latest genetic engineering technologies. We also discuss the different types of NK cells developed for cancer immunotherapy and present the clinical trials being conducted to test their safety and efficacy.
Project description:Natural killer (NK) cell is a powerful malignant cells killer, providing rapid immune responses via direct cytotoxicity without the need of antigen processing and presentation. It plays an essential role in preventing early tumor, metastasis and minimal residual disease. Although adoptive NK therapies achieved great success in clinical trials against hematologic malignancies, their accumulation, activation, cytotoxic and immunoregulatory functions are severely impaired in the immunosuppressive microenvironment of solid tumors. Now with better understandings of the tumor evasive mechanisms from NK-mediated immunosurveillance, immunotherapies targeting the key molecules for NK cell dysfunction and exhaustion have been developed and tested in both preclinical and clinical studies. In this review, we introduce the challenges that NK cells encountered in solid tumor microenvironment (TME) and the therapeutic approaches to overcome these limitations, followed by an outline of the recent preclinical advances and the latest clinical outcomes of NK-based immunotherapies, as well as promising strategies to optimize current NK-targeted immunotherapies for solid tumors.
Project description:Angiogenesis is a hallmark of cancer biology, and neoadjuvant therapies targeting either tumor vasculature or VEGF signaling have been developed to treat solid malignant tumors. However, these therapies induce complete vascular depletion leading to hypoxic niche, drug resistance, and tumor recurrence rate or leading to impaired delivery of chemo drugs and immune cell infiltration at the tumor site. Achieving a balance between oxygenation and tumor growth inhibition requires determining vascular normalization after treatment with a low dose of antiangiogenic agents. However, monotherapy within the approved antiangiogenic agents' benefits only some tumors and their efficacy improvement could be achieved using immunotherapy and emerging nanocarriers as a clinical tool to optimize subsequent therapeutic regimens and reduce the need for a high dosage of chemo agents. More importantly, combined immunotherapies and nano-based delivery systems can prolong the normalization window while providing the advantages to address the current treatment challenges within antiangiogenic agents. This review summarizes the approved therapies targeting tumor angiogenesis, highlights the challenges and limitations of current therapies, and discusses how vascular normalization, immunotherapies, and nanomedicine could introduce the theranostic potentials to improve tumor management in future clinical settings.
Project description:The therapeutic success and widespread approval of genetically engineered T cells for a variety of hematologic malignancies spurred the development of synthetic cell-based immunotherapies for CNS lymphoma, primary brain tumors, and a growing spectrum of nononcologic disease conditions of the nervous system. Chimeric antigen receptor effector T cells bear the potential to deplete target cells with higher efficacy, better tissue penetration, and greater depth than antibody-based cell depletion therapies. In multiple sclerosis and other autoimmune disorders, engineered T-cell therapies are being designed and currently tested in clinical trials for their safety and efficacy to eliminate pathogenic B-lineage cells. Chimeric autoantibody receptor T cells expressing a disease-relevant autoantigen as cell surface domains are designed to selectively deplete autoreactive B cells. Alternative to cell depletion, synthetic antigen-specific regulatory T cells can be engineered to locally restrain inflammation, support immune tolerance, or efficiently deliver neuroprotective factors in brain diseases in which current therapeutic options are very limited. In this article, we illustrate prospects and bottlenecks for the clinical development and implementation of engineered cellular immunotherapies in neurologic diseases.
Project description:The past decade has seen several anticancer immunotherapeutic strategies transition from "promising preclinical models" to treatments with proven clinical activity or benefit. In 2013, the journal Science selected the field of Cancer Immunotherapy as the overall number-1 breakthrough for the year in all of scientific research. In the setting of cancer immunotherapy for adult malignancies, many of these immunotherapy strategies have relied on the cancer patient's endogenous antitumor T-cell response. Although much promising research in pediatric oncology is similarly focused on T-cell reactivity, several pediatric malignancies themselves, or the chemo-radiotherapy used to achieve initial responses, can be associated with profound immune suppression, particularly of the T-cell system. A separate component of the immune system, also able to mediate antitumor effects and less suppressed by conventional cancer treatment, is the NK-cell system. In recent years, several distinct immunotherapeutic approaches that rely on the activity of NK cells have moved from preclinical development into clinical testing, and some have shown clear antitumor benefit. This review provides an overview of NK cell-based immunotherapy efforts that are directed toward childhood malignancies, with an emphasis on protocols that are already in clinical testing.
Project description:Gastric cancer (GC) is the fourth most common cancer worldwide, with overall 5-year survival rate of approximate 20%. Although multimodal treatments that combine surgery with chemotherapy and immunotherapy have been shown to improve survival, pathological complete response (pCR) is rare in advanced GC patients with liver metastases. Pre-clinical studies and clinical trials have demonstrated the antitumor efficacy of invariant natural killer T (iNKT) cells in various malignancies, including GC. While multimodal therapy comprised of chemotherapy, anti-programmed cell death-1 (PD-1) therapy, and iNKT cell immunotherapy have not been reported in GC patients. This case report describes the treatment of an early 60s patient diagnosed with advanced stage IVB (T1N1M1) adenocarcinomas of gastric cardia with liver metastases who received multimodal therapy comprised of SOX chemotherapy, anti-programmed cell death-1 (PD-1) therapy, and iNKT cell immunotherapy followed by surgical resection. Dramatic decreases in tumor area were observed in both the primary tumor and metastatic lesions following six cycles of SOX chemotherapy and iNKT cell immunotherapy, and four cycles of anti-PD-1 therapy. This combined treatment resulted in the transformation of a remarkably large, unresectable liver metastases into a resectable tumor, and the patient received total gastrectomy with D2 lymph node dissection and liver metastasectomy. Subsequent pathological examination detected no cancer cells in either the primary site or liver metastatic lesions, supporting the likelihood that this treatment achieved pCR. To our knowledge, this report represents the first case of a metastatic gastric cancer patient displaying pCR after six months of multimodal therapy, thus supporting that a SOX chemotherapy, anti-PD-1 therapy, and iNKT cell immunotherapy combination strategy may be effective for treating, and potentially curing, patients with advanced gastric adenocarcinoma.