Unknown

Dataset Information

0

Comparative Life Cycle Assessment of Cellulose Nanofibres Production Routes from Virgin and Recycled Raw Materials.


ABSTRACT: Nanocellulose-based materials are attracting an increasing interest for the positive role they could play in sustainable development; being originated from renewable resources. Moreover, cellulose has a high potential of recycling from both post-consumer waste and industrial waste. Both factors, i.e., recyclability and renewable resources; results are also extremely favourable in the perspective of circular economy. Despite all these positive aspects, an industrial production has yet to start. At the lab scale, many preparation methods of cellulose nanofibres (CNF) are available; here, the three most common are analysed: (1) enzymatic pre-treatment followed by homogenisation (ENZHO), (2) oxidative pre-treatment combined with homogenisation (TOHO) or (3) oxidative pre-treatment followed by sonication (TOSO). All three processes have been experimentally carried out starting from both virgin and recycled cellulose from industrial waste sludge. The environmental sustainability of these three routes is estimated by the Life Cycle Assessment (LCA) using experimental lab scale data. In this scenario, the comparative LCA has pointed out a superior performance of the ENZHO process, followed by TOHO and, lastly, by TOSO. The influence of energy consumption on the final results has been further investigated by a sensitivity analysis, showing that the TOHO and TOSO routes could reach similar performances by scaling-up the process from the laboratory. The different typology of CNF obtained by conducting the ENZHO process with respect to the TEMPO-mediated oxidation approach is also outlined as an additional element to be considered for the final selection of a suitable process.

SUBMITTER: Gallo Stampino P 

PROVIDER: S-EPMC8125706 | biostudies-literature | 2021 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comparative Life Cycle Assessment of Cellulose Nanofibres Production Routes from Virgin and Recycled Raw Materials.

Gallo Stampino Paola P   Riva Laura L   Punta Carlo C   Elegir Graziano G   Bussini Daniele D   Dotelli Giovanni G  

Molecules (Basel, Switzerland) 20210428 9


Nanocellulose-based materials are attracting an increasing interest for the positive role they could play in sustainable development; being originated from renewable resources. Moreover, cellulose has a high potential of recycling from both post-consumer waste and industrial waste. Both factors, i.e., recyclability and renewable resources; results are also extremely favourable in the perspective of circular economy. Despite all these positive aspects, an industrial production has yet to start. A  ...[more]

Similar Datasets

| S-EPMC6415374 | biostudies-literature
| S-EPMC10539515 | biostudies-literature
| S-EPMC6873557 | biostudies-literature
| S-EPMC10647352 | biostudies-literature
| S-EPMC9915455 | biostudies-literature
| S-EPMC10144496 | biostudies-literature
| S-EPMC10007196 | biostudies-literature
| S-EPMC7005520 | biostudies-literature
| S-EPMC7081644 | biostudies-literature
| S-EPMC10428165 | biostudies-literature