Unknown

Dataset Information

0

Predicting allergic diseases in children using genome-wide association study (GWAS) data and family history.


ABSTRACT: The recent rise in the prevalence of chronic allergic diseases among children has increased disease burden and reduced quality of life, especially for children with comorbid allergic diseases. Predicting the occurrence of allergic diseases can help prevent its onset for those in high risk groups. Herein, we aimed to construct prediction models for asthma, atopic dermatitis (AD), and asthma-AD comorbidity (also known as atopic march) using a genome-wide association study (GWAS) and family history data from patients of Korean heritage. Among 973 patients and 481 healthy controls, we evaluated single nucleotide polymorphism (SNP) heritability for each disease using genome-based restricted maximum likelihood (GREML) analysis. We then compared the performance of prediction models constructed using Least Absolute Shrinkage and Selection Operator (LASSO) and penalized ridge regression methods. Our results indicate that the addition of family history risk scores to the prediction model greatly increase the predictability of asthma and asthma-AD comorbidity. However, prediction of AD was mostly attributable to GWAS SNPs.

SUBMITTER: Park J 

PROVIDER: S-EPMC8131739 | biostudies-literature | 2021 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Predicting allergic diseases in children using genome-wide association study (GWAS) data and family history.

Park Jaehyun J   Jang Haerin H   Kim Mina M   Hong Jung Yeon JY   Kim Yoon Hee YH   Sohn Myung Hyun MH   Park Sang-Cheol SC   Won Sungho S   Kim Kyung Won KW  

The World Allergy Organization journal 20210508 5


The recent rise in the prevalence of chronic allergic diseases among children has increased disease burden and reduced quality of life, especially for children with comorbid allergic diseases. Predicting the occurrence of allergic diseases can help prevent its onset for those in high risk groups. Herein, we aimed to construct prediction models for asthma, atopic dermatitis (AD), and asthma-AD comorbidity (also known as atopic march) using a genome-wide association study (GWAS) and family history  ...[more]

Similar Datasets

| S-EPMC6670049 | biostudies-literature
| S-EPMC4282961 | biostudies-literature
| S-EPMC5959890 | biostudies-literature
| S-EPMC3371359 | biostudies-literature
| S-EPMC10557939 | biostudies-literature
| S-EPMC6428872 | biostudies-literature
| S-EPMC6879037 | biostudies-literature
| S-EPMC2820681 | biostudies-literature
| S-EPMC3865418 | biostudies-literature
| S-EPMC9922991 | biostudies-literature