Project description:(1) Background: COVID-19 vaccination hesitancy is a threat for fragile patients. We aimed to evaluate COVID-19 vaccination hesitancy and its reasons in a population of liver transplant (LT) recipients. (2) Methods: In February 2021, a questionnaire on COVID-19 vaccines was sent to LT patients followed at our liver transplant outpatient clinic in Milan, Italy. Sociodemographic and clinical characteristics were recorded. Patients were defined as willing, hesitant, or refusing and their reasons were investigated. Associations between baseline characteristics and willingness were evaluated. Since March 2021, when the COVID-19 vaccines became available for LT candidates and recipients in Italy, the entire cohort of LT recipients was contacted by phone and called for vaccination, and the rate of refusals recorded. (3) Results: The web-based survey was sent to 583 patients, of whom 190 responded (response rate of 32.6%). Among the respondents to the specific question about hesitancy (184), 157 (85.3%) were willing to be vaccinated against COVID-19, while 27 (14.7%) were hesitant. Among the hesitant, three were totally refusing, for a refusal rate of 1.6%. Thirteen hesitant patients (48.1%) answered that their COVID-19 vaccination hesitancy was influenced by being a transplant recipient. The fear of adverse effects was the main reason for refusal (81.5%). Of the 711 LT patients followed at our center, 668 got fully vaccinated, while 43 (6.1%) of them refused the scheduled vaccination. (4) Conclusions: Most patients accepted COVID-19 vaccines, although 6.1% refused the vaccine. Since it is crucial to achieve adequate vaccination of LT patients, it is very important to identify the reasons influencing COVID-19 vaccination hesitancy so that appropriate and targeted communication strategies can be established and specific vaccination campaigns further implemented.
Project description:COVID-19 vaccination has significantly impacted the global pandemic by reducing the severity of infection, lowering rates of hospitalization, and reducing morbidity/mortality in healthy individuals. However, the degree of vaccine-induced protection afforded to renal transplant recipients who receive forms of maintenance immunosuppression remains poorly defined. This is particularly important when we factor in the emergence of SARS-CoV-2 variants of concern (VOCs) that have defined mutations that reduce the effectiveness of Ab responses targeting the Spike Ags from the ancestral Wuhan-Hu-1 variants employed in the most widely used vaccine formats. In this study, we describe a qualitative, longitudinal analysis of neutralizing Ab responses against multiple SARS-CoV-2 VOCs in 129 renal transplant recipients who have received three doses of the Pfizer-BioNTech COVID-19 vaccine (BNT162b2). Our results reveal a qualitative and quantitative reduction in the vaccine-induced serological response in transplant recipients versus healthy controls where only 51.9% (67 of 129) made a measurable vaccine-induced IgG response and 41.1% (53 of 129) exhibited a significant neutralizing Ab titer (based on a pseudovirus neutralization test value >50%). Analysis on the VOCs revealed strongest binding toward the wild-type Wuhan-Hu-1 and Delta variants but none with both of the Omicron variants tested (BA1 and BA2). Moreover, older transplant recipients and those who are on mycophenolic acid as part of their maintenance therapy exhibited a profound reduction in all of the analyzed vaccine-induced immune correlates. These data have important implications for how we monitor and manage transplant patients in the future as COVID-19 becomes endemic in our populations.
Project description:Background & aimsImmune responses of solid organ transplant recipients to 2 doses of the BNT162b2 mRNA anti-SARS-CoV-2 vaccine are impaired. The immunogenicity and safety of a third dose among liver transplant (LT) recipients are unknown. This work aimed to evaluate the immune response of LT recipients to a third dose of the BNT162b2 mRNA vaccine.MethodsConsecutive LT recipients (n = 61) in follow-up at Sheba Medical Center were included. Receptor binding domain (RBD) IgG, neutralizing antibody (NA) titers, and T-cell levels before and 21-28 days after a third vaccine dose were determined. Adverse effects after the third dose were monitored.ResultsThe median age of LT recipients was 65 years and 57.4% were male. The humoral immune response rate improved significantly, with 56% of patients showing a response before the third vaccine dose compared to 98% after the third dose. The cellular response in 12 evaluated patients improved significantly (p = 0.008). The geometric mean of anti-RBD IgG levels, NA levels, and T-cell count also increased significantly after the third dose. NA titers after the third dose negatively correlated with age (p = 0.03), mycophenolate mofetil treatment (p = 0.005), and combined immunosuppression as opposed to calcineurin inhibitor monotherapy (p = 0.001). After the third dose, adverse effects were reported by 37% of recipients and were mostly mild (local pain and fatigue).ConclusionAfter a third BNT162b2 mRNA vaccine, the immune response improved significantly among LT recipients, without serious adverse effects. Further studies are needed to evaluate immune response durability and to determine the optimal number and schedule of booster vaccine doses.Lay summaryThe Pfizer-Biotech BNT162b2SARS-CoV-2 vaccine induced significant immunity among liver transplant recipients after a third dose. The majority of the patients developed sufficient levels of both humoral and cellular immune responses. Factors that predict non-response were older age and immunosuppressive medications.
Project description:Consensus on timing of post-hematopoietic stem cell transplantation (HSCT) vaccination is currently lacking and is therefore assessed in this review. PubMed was searched systematically for articles concerning vaccination post-HSCT and included a basis in predefined criteria. To enable comparison, data were extracted and tables were constructed per vaccine, displaying vaccine response as either seroprotection or seroconversion for allogeneic HSCT (alloHSCT) and autologous HSCT (autoHSCT) separately. A total of 33 studies were included with 1914 patients in total: 1654 alloHSCT recipients and 260 autoHSCT recipients. In alloHSCT recipients, influenza vaccine at 7-48 months post-transplant resulted in responses of 10-97%. After 12 months post-transplant, responses were >45%. Pneumococcal vaccination 3-25 months post-transplant resulted in responses of 43-99%, with the response increasing with time. Diphtheria, tetanus, pertussis, poliomyelitis and Haemophilus influenzae type b at 6-17 months post-transplant: 26-100%. Meningococcal vaccination at 12 months post-transplant: 65%. Hepatitis B vaccine at 6-23 months post-transplant: 40-94%. Measles, mumps and rubella at 41-69 months post-transplant: 19-72%. In general, autoHSCT recipients obtained slightly higher responses compared with alloHSCT recipients. Conclusively, responses to childhood immunization vaccines post-HSCT are poor in comparison with healthy individuals. Therefore, evaluation of response might be indicated. Timing of revaccination is essential for optimal response. An individualized approach might be necessary for optimizing vaccine responses.
Project description:Kidney transplant recipients (KTRs) have been identified as a population at increased risk for severe SARS-CoV-2 infection outcomes. This study focused on understanding the immune response of KTRs post-vaccination, specifically examining both serological and cellular responses to the SARS-CoV-2 vaccine. Thirteen individuals, including seven KTRs and six healthy donors, were evaluated for antibody levels and T cell responses post-vaccination. The study revealed that KTRs had significantly lower serological responses, including reduced anti-receptor binding domain (RBD) binding antibodies and neutralizing antibodies against the Wuhan, Delta, and Omicron BA.2 strains. Additionally, KTRs demonstrated weaker CD8 T cell cytotoxic responses and lower Th1 cytokine secretion, particularly IFN-γ, after stimulation with variant spike peptide pools. These findings highlight the compromised immunity in KTRs post-vaccination and underscore the need for tailored strategies to bolster immune responses in this vulnerable group. Further investigations are warranted into the mechanisms underlying reduced vaccine efficacy in KTRs and potential therapeutic interventions.ImportanceSome studies have revealed that KTRs had lower serological response against SARS-CoV-2 than healthy people. Nevertheless, limited studies investigate the cellular response against SARS-CoV-2 in KTRs receiving SARS-CoV-2 vaccines. Here, we found that KTRs have lower serological and cellular responses. Moreover, we found that KTRs had a significantly lower IFN-γ secretion than healthy individuals when their PBMCs were stimulated with SARS-CoV-2 spike peptide pools. Thus, our findings suggested that additional strategies are needed to enhance KTR immunity triggered by the vaccine.
Project description:BackgroundAlthough severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination reduces the risk and severity of coronavirus disease 2019 (COVID-19), several variables may impact the humoral response among patients undergoing hematopoietic stem cell transplantation (HSCT).MethodsA retrospective chart review was conducted among SARS-CoV-2-vaccinated HSCT recipients between 2020 and 2022 at a single center in Boston, Massachusetts. Patients age ≥18 years who received doses of Pfizer, Moderna, or J&J vaccines were included. Anti-spike (S) immunoglobulin G (IgG) titer levels were measured using the Roche assay. Responders (≥0.8 U/mL) and nonresponders (<0.8 U/mL) were categorized and analyzed. Multivariable linear and logistic regression were used to estimate the correlation coefficient and odds ratio of response magnitude and status.ResultsOf 152 HSCT recipients, 141 (92.8%) were responders, with a median (interquartile range [IQR]) anti-S IgG titer of 2500 (107.9-2500) U/mL at a median (IQR) of 80.5 (36-153.5) days from last dose, regardless of the number of doses received. Higher quantitative titers were associated with receipt of more vaccine doses (coeff, 205.79; 95% CI, 30.10 to 381.47; P = .022), being female (coeff, 343.5; 95% CI, -682.6 to -4.4; P = .047), being younger (<65 years; coeff, 365.2; 95% CI, -711.3 to 19.1; P = .039), and not being on anti-CD20 therapy (coeff, -1163.7; 95% CI, -1717.7 to -609.7; P = .001). Being male (odds ratio [OR], 0.11; 95% CI, 0.01 to 0.93; P = .04) and being on anti-CD20 therapy (OR, 0.16; 95% CI, 0.03 to 0.70; P = .016) were associated with nonresponse.ConclusionsOverall, most HSCT recipients had high SARS-CoV-2 antibody responses. More vaccine doses improved the magnitude of immune responses. Anti-S IgG monitoring may be useful for identifying attenuated vaccine-induced responses.
Project description:Background/aimsData of coronavirus disease 2019 (COVID-19) vaccine immunogenicity among chronic liver disease (CLD) and liver transplant (LT) patients are conflicting. We performed meta-analysis to examine vaccine immunogenicity regarding etiology, cirrhosis status, vaccine platform and type of antibody.MethodsWe collected data via three databases from inception to February 16, 2022, and reported pooled seroconversion rate, T cell response and safety data after two vaccine doses.ResultsTwenty-eight (CLD only: 5; LT only: 18; both: 2; LT with third dose: 3) observational studies of 3,945 patients were included. For CLD patients, seroconversion rate ranged between 84% (95% confidence interval [CI], 76-90%) and 91% (95% CI, 83-95%), based predominantly on neutralizing antibody and anti-spike antibody, respectively. Seroconversion rate was 81% (95% CI, 76-86%) in chronic hepatitis B, 96% (95% CI, 93-97%) in non-alcoholic fatty liver disease, 85% (95% CI, 75-91%) in cirrhosis and 85% (95% CI, 78-90%) in non-cirrhosis, 86% (95% CI, 78-92%) for inactivated vaccine and 89% (95% CI, 71-96%) for mRNA vaccine. The pooled seroconversion rate of anti-spike antibody was 66% (95% CI, 55-75%) after two doses of mRNA vaccines and 88% (95% CI, 58-98%) after third dose among LT recipients. T cell response rate was 65% (95% CI, 30-89%). Prevalence of adverse events was 27% (95% CI, 18-38%) and 63% (95% CI, 39-82%) among CLD and LT groups, respectively.ConclusionCLD patients had good humoral response to COVID-19 vaccine, while LT recipients had lower response.
Project description:The clinical course of Pneumocystis pneumonia in liver transplant recipients has not been well investigated. Therefore, we collected and analyzed the clinical, epidemiological, and molecular data from patients with Pneumocystis pneumonia as well as paired controls (Chinese Clinical Trial Registry, ChiCTR2100046028; www.chictr.org.cn). There were a total of ten patients diagnosed with Pneumocystis pneumonia containing prospectively included six patients and retrospectively collected four patients, of which seven were transferred to the surgical intensive care unit and four died. The transmission map revealed that inter-patient transmission of Pneumocystis jirovecii was impossible; P. jirovecii detection was negative in all air samples. It was positive only in one sample from the twelve healthcare workers who had close contact with diseased patients. Five out of 79 liver transplant recipients during the outbreak were colonized with Pneumocystis jirovecii compared to 2 out of 94 after the outbreak upon admission (P>0.05). Liver transplant recipients with Pneumocystis pneumonia had totally different genotypes based on multilocus sequence typing. Additionally, we found an unreported mutation in the cytochrome b gene. The absolute CD19+ B-cell counts (odds ratio: 1.028; 95% confidence interval: 1.000-1.057; P=0.049) were defined to be the only significant independent risk factor. At a cut-off value of 117.16/µL, the sensitivity and specificity were 100% and 70%, respectively. Pneumocystis pneumonia is a severe complication following liver transplantation. The outbreak may not be caused by nosocomial transmission. A decrease in absolute CD19+ B-cell counts may be associated with the development of Pneumocystis pneumonia.
Project description:Severe acute respiratory syndrome coronavirus 2-specific cell-mediated immunity (SARS-CoV-2-CMI) elicited by mRNA-based vaccines in solid organ transplant (SOT) recipients and its correlation with antibody responses remain poorly characterized.MethodsWe included 44 (28 kidney, 14 liver, and 2 double organ) recipients who received the full series of the mRNA-1273 vaccine. SARS-CoV-2-CMI was evaluated at baseline, before the second dose, and at 2 wk after completion of vaccination by an ELISpot-based interferon-γ FluoroSpot assay using overlapping peptides covering the S1 domain. SARS-CoV-2 immunoglobulin G seroconversion and serum neutralizing activity against the spike protein were assessed at the same points by commercial ELISA and an angiotensin-converting enzyme-2/spike antibody inhibition method, respectively. Postvaccination SARS-CoV-2-CMI was compared with 28 healthcare workers who received the BNT162b2 vaccine.ResultsPositive SARS-CoV-2-CMI increased from 6.8% at baseline to 23.3% after the first mRNA-1273 dose and 59.5% after the completion of vaccination (P < 0.0001). Lower rates were observed for immunoglobulin G seroconversion (2.3%, 18.6%, and 57.1%, respectively) and neutralizing activity (2.3%, 11.6%, and 31.0%). There was a modest correlation between neutralizing titers and the magnitude of SARS-CoV-2-CMI (Spearman's rho: 0.375; P = 0.015). Fifteen recipients (35.7%) mounted SARS-CoV-2-CMI without detectable neutralizing activity, whereas 3 (7.1%) did the opposite, yielding poor categorical agreement (Kappa statistic: 0.201). Rates of positive SARS-CoV-2-CMI among SOT recipients were significantly decreased compared with nontransplant controls (82.1% and 100.0% after the first dose and completion of vaccination, respectively; P < 0.0001). Kidney transplantation, the use of tacrolimus and prednisone, and the number of immunosuppressive agents were associated with lower cell-mediated responses. Results remained unchanged when 3 recipients with prevaccination SARS-CoV-2-CMI were excluded.ConclusionsTwo-thirds of SOT recipients mounted SARS-CoV-2-CMI following vaccination with mRNA-1273. Notable discordance was observed between vaccine-induced cell-mediated and neutralizing humoral immunities. Future studies should determine whether these patients with incomplete responses are effectively protected.