Unknown

Dataset Information

0

A Class of Valuable (Pro-)Activity-Based Protein Profiling Probes: Application to the Redox-Active Antiplasmodial Agent, Plasmodione.


ABSTRACT: Plasmodione (PD) is a potent antimalarial redox-active drug acting at low nM range concentrations on different malaria parasite stages. In this study, in order to determine the precise PD protein interactome in parasites, we developed a class of (pro-)activity-based protein profiling probes (ABPP) as precursors of photoreactive benzophenone-like probes based on the skeleton of PD metabolites (PDO) generated in a cascade of redox reactions. Under UV-photoirradiation, we clearly demonstrate that benzylic oxidation of 3-benzylmenadione 11 produces the 3-benzoylmenadione probe 7, allowing investigation of the proof-of-concept of the ABPP strategy with 3-benzoylmenadiones 7-10. The synthesized 3-benzoylmenadiones, probe 7 with an alkyne group or probe 9 with -NO2 in para position of the benzoyl chain, were found to be the most efficient photoreactive and clickable probes. In the presence of various H-donor partners, the UV-irradiation of the photoreactive ABPP probes generates different adducts, the expected "benzophenone-like" adducts (pathway 1) in addition to "benzoxanthone" adducts (via two other pathways, 2 and 3). Using both human and Plasmodium falciparum glutathione reductases, three protein ligand binding sites were identified following photolabeling with probes 7 or 9. The photoreduction of 3-benzoylmenadiones (PDO and probe 9) promoting the formation of both the corresponding benzoxanthone and the derived enone could be replaced by the glutathione reductase-catalyzed reduction step. In particular, the electrophilic character of the benzoxanthone was evidenced by its ability to alkylate heme, as a relevant event supporting the antimalarial mode of action of PD. This work provides a proof-of-principle that (pro-)ABPP probes can generate benzophenone-like metabolites enabling optimized activity-based protein profiling conditions that will be instrumental to analyze the interactome of early lead antiplasmodial 3-benzylmenadiones displaying an original and innovative mode of action.

SUBMITTER: Cichocki BA 

PROVIDER: S-EPMC8154199 | biostudies-literature | 2021 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Class of Valuable (Pro-)Activity-Based Protein Profiling Probes: Application to the Redox-Active Antiplasmodial Agent, Plasmodione.

Cichocki Bogdan Adam BA   Khobragade Vrushali V   Donzel Maxime M   Cotos Leandro L   Blandin Stephanie S   Schaeffer-Reiss Christine C   Cianférani Sarah S   Strub Jean-Marc JM   Elhabiri Mourad M   Davioud-Charvet Elisabeth E  

JACS Au 20210415 5


Plasmodione (<b>PD</b>) is a potent antimalarial redox-active drug acting at low nM range concentrations on different malaria parasite stages. In this study, in order to determine the precise <b>PD</b> protein interactome in parasites, we developed a class of (pro-)activity-based protein profiling probes (ABPP) as precursors of photoreactive benzophenone-like probes based on the skeleton of <b>PD</b> metabolites (<b>PDO</b>) generated in a cascade of redox reactions. Under UV-photoirradiation, w  ...[more]

Similar Datasets

| S-EPMC11900971 | biostudies-literature
| S-EPMC11771622 | biostudies-literature
| S-EPMC6837537 | biostudies-literature
| S-EPMC7318682 | biostudies-literature
| S-EPMC7545953 | biostudies-literature
| S-EPMC3871076 | biostudies-literature
| S-EPMC7497081 | biostudies-literature
| S-EPMC6071861 | biostudies-literature
2011-11-01 | GSE29874 | GEO
| S-EPMC4997830 | biostudies-literature