Unknown

Dataset Information

0

Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions.


ABSTRACT: Existing computational methods that use single-cell RNA-sequencing (scRNA-seq) for cell fate prediction do not model how cells evolve stochastically and in physical time, nor can they predict how differentiation trajectories are altered by proposed interventions. We introduce PRESCIENT (Potential eneRgy undErlying Single Cell gradIENTs), a generative modeling framework that learns an underlying differentiation landscape from time-series scRNA-seq data. We validate PRESCIENT on an experimental lineage tracing dataset, where we show that PRESCIENT is able to predict the fate biases of progenitor cells in hematopoiesis when accounting for cell proliferation, improving upon the best-performing existing method. We demonstrate how PRESCIENT can simulate trajectories for perturbed cells, recovering the expected effects of known modulators of cell fate in hematopoiesis and pancreatic β cell differentiation. PRESCIENT is able to accommodate complex perturbations of multiple genes, at different time points and from different starting cell populations, and is available at https://github.com/gifford-lab/prescient .

SUBMITTER: Yeo GHT 

PROVIDER: S-EPMC8163769 | biostudies-literature | 2021 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions.

Yeo Grace Hui Ting GHT   Saksena Sachit D SD   Gifford David K DK  

Nature communications 20210528 1


Existing computational methods that use single-cell RNA-sequencing (scRNA-seq) for cell fate prediction do not model how cells evolve stochastically and in physical time, nor can they predict how differentiation trajectories are altered by proposed interventions. We introduce PRESCIENT (Potential eneRgy undErlying Single Cell gradIENTs), a generative modeling framework that learns an underlying differentiation landscape from time-series scRNA-seq data. We validate PRESCIENT on an experimental li  ...[more]

Similar Datasets

| S-EPMC8504625 | biostudies-literature
| S-EPMC6289068 | biostudies-literature
| S-EPMC6853676 | biostudies-literature
| S-EPMC6953770 | biostudies-literature
| S-EPMC11373355 | biostudies-literature
| S-EPMC8223760 | biostudies-literature
| S-EPMC9840703 | biostudies-literature
| S-EPMC11384007 | biostudies-literature
| S-EPMC5039927 | biostudies-literature
| S-EPMC10436058 | biostudies-literature