Project description:Color-changeable fibers can provide diverse functions for intelligent wearable devices such as novel information displays and human-machine interfaces when woven into fabric. This work develops a low-cost, effective, and scalable strategy to produce thermochromic fibers by wet spinning. Through a combination of different thermochromic microcapsules, flexible fibers with abundant and reversible color changes are obtained. These color changes can be clearly observed by the naked eye. It is also found that the fibers exhibit excellent color-changing stability even after 8000 thermal cycles. Moreover, the thermochromic fibers can be fabricated on a large scale and easily woven or implanted into various fabrics with good mechanical performance. Driven by their good mechanical and physical characteristics, applications of thermochromic fibers in dynamic colored display are demonstrated. Dynamic quick response (QR) code display and recognition are successfully realized with thermochromic fabrics. This work well confirms the potential applications of thermochromic fibers in smart textiles, wearable devices, flexible displays, and human-machine interfaces.
Project description:Energy efficiency in habitation spaces is a pivotal topic for maintaining energy sufficiency, cutting climate impact, and facilitating economic savings; thus, there is a critical need for solutions aimed at tackling this problem. One viable approach involves complementing active cooling methods with powerless or passive cooling ones. Moreover, considerable scope remains for the development of passive radiative cooling solutions based on sustainable materials. Cellulose, characterized by its abundance, renewability, and biodegradability, emerges as a promising material for this purpose due to its notable radiative cooling potential exploiting the mid-infrared (MIR) atmospheric transmission window (8-13 μm). In this work, we propose the utilization of thermochromic (TC) materials in conjunction with cellulose nanofibrils (CNF) to confer temperature-dependent adaptivity to hybrid CNF films. We employ a concept where high reflection, coupled with MIR emission in the heated state, facilitates cooling, while high visible light absorption in the cold state allows heating, thus enabling adaptive thermal regulation. CNF films were doped with black-to-leuco TC particles, and a thin silver layer was optionally applied to the films. The films exhibited a rapid transition (within 1 s) in their optical properties at ∼22 °C, becoming transparent above the transition temperature. Visible range transmittance of all samples ranged from 60 to 90%, with pronounced absorption in the 8-13 μm range. The cooling potential of the films was measured at 1-4 °C without any Ag layer and ∼10 °C with a Ag layer. In outdoor field testing, a peak cooling value of 12 °C was achieved during bright sunshine, which is comparable to a commercial solar film. A simulation model was also built based on the experimental results. The concept presented in this study extends beyond applications as standalone films but has applicability also in glass coatings. Overall, this work opens the door for a novel application opportunity for green cellulose-based materials.
Project description:In corn/maize, silks emerging from cobs capture pollen, and transmit resident sperm nuclei to eggs. There are > 20 million silks per U.S. maize acre. Fungal pathogens invade developing grain using silk channels, including Fusarium graminearum (Fg, temperate environments) and devastating carcinogen-producers (Africa/tropics). Fg contaminates cereal grains with mycotoxins, in particular Deoxynivalenol (DON), known for adverse health effects on humans and livestock. Fitness selection should promote defensive/healthy silks. Here, we report that maize silks, known as styles in other plants, possess complex and dynamic microbiomes at the critical pollen-fungal transmission interval (henceforth: transmitting style microbiome, TSM). Diverse maize genotypes were field-grown in two trial years. MiSeq 16S rRNA gene sequencing of 328 open-pollinated silk samples (healthy/Fg-infected) revealed that the TSM contains > 5000 taxa spanning the prokaryotic tree of life (47 phyla/1300 genera), including nitrogen-fixers. The TSM of silk tip tissue displayed seasonal responsiveness, but possessed a reproducible core of 7-11 MiSeq-amplicon sequence variants (ASVs) dominated by a single Pantoea MiSeq-taxon (15-26% of sequence-counts). Fg-infection collapsed TSM diversity and disturbed predicted metabolic functionality, but doubled overall microbiome size/counts, primarily by elevating 7-25 MiSeq-ASVs, suggestive of a selective microbiome response against infection. This study establishes the maize silk as a model for fundamental/applied research of plant reproductive microbiomes.
Project description:Light-emitting fibers have been intensively developed for the realization of textile displays and various lighting applications, as promising free-form electronics with outstanding interconnectivity. These advances in the fiber displays have been made possible by the successful implementation of the core technologies of conventional displays, including high optoelectronic performance and essential elements, in the fiber form-factor. However, although white organic light-emitting diodes (WOLEDs), as a fundamental core technology of displays, are essential for realizing full-color displays and solid-state lighting, fiber-based WOLEDs are still challenging due to structural issues and the lack of approaches to implementing WOLEDs on fiber. Herein, the first fiber WOLED is reported, exhibiting high optoelectronic performance and a reliable color index, comparable to those of conventional planar WOLEDs. As key features, it is found that WOLEDs can be successfully introduced on a cylindrical fiber using a dip-coatable single white-emission layer based on simulation and optimization of the white spectra. Furthermore, to ensure durability from usage, the fiber WOLED is encapsulated by an Al2 O3 /elastomer bilayer, showing stable operation under repetitive bending and pressure, and in water. This pioneering work is believed to provide building blocks for realizing complete textile display technologies by complementing the lack of the core technology.
Project description:Window coatings with dynamic solar transmittance represent an excellent opportunity to reduce building heating and cooling loads, which account for >40% of energy consumed by the built environment. In particular, inorganic vanadium dioxide-based thermochromic coatings offer long lifetimes (>30 years) and can be passively integrated into a window system without additional electronics or power requirements. However, their limited solar modulation depth and wide phase-change hysteresis have traditionally restricted their ability to adapt to changing weather conditions. Here, we derive an optical performance limit for thin film vanadium dioxide coatings, which we find to be far beyond the current literature. Furthermore, we experimentally demonstrate a solution-processed multilayer thin film coating that uses temperature-dependent optical impedance matching to approach the optical performance limit. The thin film coating demonstrated has a record solar transmittance modulation of 21.8% while maintaining a high level of visible transparency (∼50%) and minimal hysteresis (∼10 °C). This work represents a step-change in thin film thermochromic window coatings and, as a result, establishes planar thin film vanadium dioxide as the most viable morphology for high-performance thermochromic windows.
Project description:P1 encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize silks and red phlobaphene pigments in pericarps and other floral tissues, which contributed to making P1 an important visual marker since the dawn of modern genetics. We conducted RNA-Seq using from maize silks obtained at 2-3 days after emergence. High-throughput sequencing using the Illumina platform resulted in the generation of ~14 million high quality reads, corresponding to ~7 million reads for each sample, from which 76% aligned to the maize genome.
Project description:Light-driven phase change materials (PCMs) have received significant attention due to their capacity to convert visible light into thermal energy, storing it as latent heat. However, continuous photo-thermal conversion can cause the PCMs to reach high thermal equilibrium temperatures after phase transition. In our study, a novel light-driven phase change material system with temperature-control properties was constructed using a thermochromic compound. Thermochromic phase change materials (TC-PCMs) were prepared by introducing 2-anilino-6-dibutylamino-3-methylfluoran (ODB-2) and bisphenol A (BPA) into 1-hexadecanol (1-HD) in various proportions. Photo-thermal conversion performance was investigated with solar radiation (low power of 0.09 W/cm2) and a xenon lamp (at a high power of 0.14 W/cm2). The TC-PCMs showed a low equilibrium temperature due to variations in absorbance. Specifically, the temperature of TC-PCM180 (ODB-2, bisphenol A and 1-HD ratio 1:2:180) could stabilize at 54 °C approximately. TC-PCMs exhibited reversibility and repeatability after 20 irradiation and cooling cycles.
Project description:In this study, thermochromic photonic gels were fabricated using 2-hydroxyethyl methacrylate (HEMA) as a hydrogel building block, and 4-Acryloyl morpholine (ACMO) and N-isopropylacrylamide (NIPAAM) as thermoresponsive monomers with different critical solution temperature behaviors. Rapid photopolymerization of opal-templated monomer mixtures of varying ACMO contents formed five individual thermochromic inverse opal photonic gels integrated on a single substrate. With temperature variation from 10 °C to 80 °C, the changes in reflective colors and reflectance spectra of the respective thermochromic gels were noted, and λpeak changes were plotted. Because NIPAAM exhibits a lower critical solution temperature (LCST) at 33 °C, the NIPAAM-only gel showed a steep slope for dλpeak/dT below 40 °C, whereas the slope became flatter at high temperatures. As the ACMO content increased in the thermochromic gel, the curve of dλpeak/dT turned out to be gradual within the investigated temperature range, exhibiting the entire visible range of colors. The incorporation of ACMO in NIPAAM-based thermochromic gels therefore enabled a better control of color changes at a relatively high-temperature regime compared to a NIPAAM-only gel. In addition, ACMO-containing thermochromic gels exhibited a smaller hysteresis of λpeak for the heating and cooling cycle.
Project description:Textile pressure sensors capable of withstanding high temperatures have attracted increasing interest due to their potential applications in harsh conditions. In this work, a textile pressure sensor with high-temperature resistance was realized based on multi-wall carbon nanotubes (MWCNTs) and quartz fabrics. The textile pressure sensors exhibited low fatigue over 20 000 cyclic loadings. Owing to the high-temperature resistance of MWCNTs and quartz fabrics, the textile sensor can work at temperatures up to 300 °C and can maintain good sensitivity after calcination at 900 °C in N2 for 30 min. This work provides a simple, facile, and inexpensive method for fabricating textile pressure sensors with high-temperature resistance.
Project description:To gain a deeper understanding of the atopic dermatitis (AD) skin transcriptome and the effects of systemic treatment with dupilumab and cyclosporine, we conducted a gene expression study of AD using mRNA-Seq data generated from lesional and non-lesional skin biopsies collected from patients included in the TREATgermany registry. We are able to provide deep characterisation of AD skin transcriptomic signatures by using an assortment of bioinformatic approaches such as differential expression, co-expression network and pathway enrichment analysis.