Unknown

Dataset Information

0

Efficient Catalytic Conversion of Polysulfides by Biomimetic Design of "Branch-Leaf" Electrode for High-Energy Sodium-Sulfur Batteries.


ABSTRACT: Rechargeable room temperature sodium-sulfur (RT Na-S) batteries are seriously limited by low sulfur utilization and sluggish electrochemical reaction activity of polysulfide intermediates. Herein, a 3D "branch-leaf" biomimetic design proposed for high performance Na-S batteries, where the leaves constructed from Co nanoparticles on carbon nanofibers (CNF) are fully to expose the active sites of Co. The CNF network acts as conductive "branches" to ensure adequate electron and electrolyte supply for the Co leaves. As an effective electrocatalytic battery system, the 3D "branch-leaf" conductive network with abundant active sites and voids can effectively trap polysulfides and provide plentiful electron/ions pathways for electrochemical reaction. DFT calculation reveals that the Co nanoparticles can induce the formation of a unique Co-S-Na molecular layer on the Co surface, which can enable a fast reduction reaction of the polysulfides. Therefore, the prepared "branch-leaf" CNF-L@Co/S electrode exhibits a high initial specific capacity of 1201 mAh g-1 at 0.1 C and superior rate performance.

SUBMITTER: Du W 

PROVIDER: S-EPMC8187676 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efficient Catalytic Conversion of Polysulfides by Biomimetic Design of "Branch-Leaf" Electrode for High-Energy Sodium-Sulfur Batteries.

Du Wenyan W   Shen Kangqi K   Qi Yuruo Y   Gao Wei W   Tao Mengli M   Du Guangyuan G   Bao Shu-Juan SJ   Chen Mingyang M   Chen Yuming Y   Xu Maowen M  

Nano-micro letters 20210105 1


Rechargeable room temperature sodium-sulfur (RT Na-S) batteries are seriously limited by low sulfur utilization and sluggish electrochemical reaction activity of polysulfide intermediates. Herein, a 3D "branch-leaf" biomimetic design proposed for high performance Na-S batteries, where the leaves constructed from Co nanoparticles on carbon nanofibers (CNF) are fully to expose the active sites of Co. The CNF network acts as conductive "branches" to ensure adequate electron and electrolyte supply f  ...[more]

Similar Datasets

| S-EPMC11912571 | biostudies-literature
| S-EPMC9008787 | biostudies-literature
| S-EPMC7660946 | biostudies-literature
| S-EPMC7284216 | biostudies-literature
| S-EPMC10254419 | biostudies-literature
| S-EPMC10837207 | biostudies-literature
| S-EPMC11345131 | biostudies-literature
| S-EPMC5816018 | biostudies-literature
| S-EPMC10214224 | biostudies-literature