Unknown

Dataset Information

0

Mining for Ligandable Cavities in RNA.


ABSTRACT: Identifying potential ligand binding cavities is a critical step in structure-based screening of biomolecular targets. Cavity mapping methods can detect such binding cavities; however, for ribonucleic acid (RNA) targets, determining which of the detected cavities are "ligandable" remains an unsolved challenge. In this study, we trained a set of machine learning classifiers to distinguish ligandable RNA cavities from decoy cavities. Application of our classifiers to two independent test sets demonstrated that we could recover ligandable cavities from decoys with an AUC > 0.83. Interestingly, when we applied our classifiers to a library of modeled structures of the HIV-1 transactivation response (TAR) element RNA, we found that several of the conformers that harbored cavities with high ligandability scores resembled known holo-TAR structures. On the basis of our results, we envision that our classifiers could find utility as a tool to parse RNA structures and prospectively mine for ligandable binding cavities and, in so doing, facilitate structure-based virtual screening efforts against RNA drug targets.

SUBMITTER: Xie J 

PROVIDER: S-EPMC8201482 | biostudies-literature | 2021 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mining for Ligandable Cavities in RNA.

Xie Jingru J   Frank Aaron T AT  

ACS medicinal chemistry letters 20210601 6


Identifying potential ligand binding cavities is a critical step in structure-based screening of biomolecular targets. Cavity mapping methods can detect such binding cavities; however, for ribonucleic acid (RNA) targets, determining which of the detected cavities are "ligandable" remains an unsolved challenge. In this study, we trained a set of machine learning classifiers to distinguish ligandable RNA cavities from decoy cavities. Application of our classifiers to two independent test sets demo  ...[more]

Similar Datasets

| S-EPMC8283815 | biostudies-literature
| S-EPMC2724294 | biostudies-literature
| S-EPMC6680310 | biostudies-literature
| S-EPMC10827202 | biostudies-literature
2024-11-10 | GSE278791 | GEO
| S-EPMC11754670 | biostudies-literature
| S-EPMC3760913 | biostudies-literature
| S-EPMC9487378 | biostudies-literature
| S-EPMC4384012 | biostudies-literature
| S-EPMC6874898 | biostudies-literature