Project description:Since the very beginning of the COVID-19 pandemic, SARS-CoV-2 detection has been described in several animal species. A total of 625 outbreaks in animals have been reported globally, affecting 17 species in 32 countries and the human source of infection has been recognized including pet owners, zookeepers, and farmers. In this report, we describe the case of a paucisymptomatic dog in Italy infected with SARS-CoV-2 from a household with three confirmed human cases of COVID-19 living in Pesaro (Marche region, Italy). The dog showed high viral RNA titers in the nasal and oropharyngeal swabs. In the nasal swab, SARS-CoV-2 RNA lasted for a least a week. By sequencing, the strain was assigned to the AY.23 lineage (PANGO), one of the sub-lineages of the major SARS-CoV-2 Delta variant of concern (VOC). Although we did not process the swabs of the three human cases, we strongly suspect a human origin for the dog infection. In this regard, AY.23 sequences, although never released thus far in the Marche region, were detected in the neighboring regions. Our findings highlight once more the need for a One Health approach for SARS-CoV-2 surveillance, management, and control, thus preventing viral spillover from animals to humans.
Project description:The Scottish Patients at Risk of Re-Admission and Admission (SPARRA) score predicts individual risk of emergency hospital admission for approximately 80% of the Scottish population. It was developed using routinely collected electronic health records, and is used by primary care practitioners to inform anticipatory care, particularly for individuals with high healthcare needs. We comprehensively assess the SPARRA score across population subgroups defined by age, sex, ethnicity, socioeconomic deprivation, and geographic location. For these subgroups, we consider differences in overall performance, score distribution, and false positive and negative rates, using causal methods to identify effects mediated through age, sex, and deprivation. We show that the score is well-calibrated across subgroups, but that rates of false positives and negatives vary widely, mediated by various causes including variability in demographic characteristics, admission reasons, and potentially differential data availability. Our work assists practitioners in the application and interpretation of the SPARRA score in population subgroups.
Project description:In this study a gene expression (i.e., RNAseq) analysis was performed in HEK293T-ACE2 cellular model upon infection with viral particle belonging to VOC Delta (MOI: 0.026) for 24 hours in order to have a global picture of the transcriptome landscape in response to early phase of infection of SARS-CoV-2 ( VOC Delta infection and to evaluate the role of Ca2+ in HEK293-ACE2 cellular model and transfer to homeostasis in SARS-COV-2 patients (by Pasqualino de Antonellis1-2* and Veronica Ferrucci 1-2* (first authors) et al. and Massimo Zollo1-2# (corresponding author). Manuscript in preparation 2022 July 15th 2022. Short title "ATP2B1 (PMCA1), regulated by FOXO3, influences susceptibility to severe COVID19".
Project description:ObjectiveStarting 31 July 2021, a SARS-CoV-2 outbreak occurred in Yantai, Shandong Province. The investigation showed that this outbreak was closely related to the epidemic at Nanjing Lukou Airport. In view of the fact that there were many people involved in this outbreak and these people had a complex activity area, the transmission route cannot be analyzed by simple epidemiological investigation. Here we combined the SARS-COV-2 whole-genome sequencing with epidemiology to determine the epidemic transmission route of Yantai.MethodsThirteen samples of SARS-CoV-2 outbreak cases from 31 July to 4 August 2021 were collected and identified by fluorescence quantitative PCR, then whole-genome deep sequencing based on NGS was performed, and the data were analyzed and processed by biological software.ResultsAll sequences were over 29,000 bases in length and all belonged to B.1.617.2, which was the Delta strain. All sequences shared two amino acid deletions and 9 amino acid mutations in Spike protein compared with reference sequence NC_045512.2 (Wuhan virus strain). Compared with the sequence of Lukou Airport Delta strain, the homology was 99.99%. In order to confirm the transmission relationship between patients, we performed a phylogenetic tree analysis. The results showed that patient 1, patient 2, and patient 9 belong to an independent branch, and other patients have a close relationship. Combined with the epidemiological investigation, we speculated that the epidemic of Yantai was transmitted by two routes at the same time. Based on this information, our prevention and control work was carried out in two ways and effectively prevented the further spread of this epidemic.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections were rising during early summer 2021 in many countries as a result of the Delta variant. We assessed reverse transcription polymerase chain reaction swab positivity in the Real-time Assessment of Community Transmission–1 (REACT-1) study in England. During June and July 2021, we observed sustained exponential growth with an average doubling time of 25 days, driven by complete replacement of the Alpha variant by Delta and by high prevalence at younger, less-vaccinated ages. Prevalence among unvaccinated people [1.21% (95% credible interval 1.03%, 1.41%)] was three times that among double-vaccinated people [0.40% (95% credible interval 0.34%, 0.48%)]. However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England. Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination.
Project description:BackgroundIn July 2021, a new variant of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in the Delta lineage was detected in the United Kingdom (UK), named AY.4.2 or "Delta plus". By October 2021, the AY.4.2 variant accounted for approximately 10-11% of cases in the UK. AY.4.2 was designated as a variant under investigation by the UK Health and Security Agency on 20 October 2021. This study aimed to investigate vaccine effectiveness (VE) against symptomatic COVID-19 (Coronavirus disease 2019) infection and COVID-19 hospitalisation/death for the AY.4.2 variant.MethodsWe used the Scotland-wide Early Pandemic Evaluation and Enhanced Surveillance (EAVE-II) platform to estimate the VE of the ChAdOx1, BNT162b2, and mRNA-1273 vaccines against symptomatic infection and severe COVID-19 outcomes in adults. The study was conducted from June 8 to October 25, 2021. We used a test-negative design (TND) to estimate VE against reverse transcriptase polymerase chain reaction (RT-PCR) confirmed symptomatic SARS-CoV-2 infection while adjusting for sex, socioeconomic status, number of coexisting conditions, and splines in time and age. We also performed a cohort study using a Cox proportional hazards model to estimate VE against a composite outcome of COVID-19 hospital admission or death, with the same adjustments.ResultsWe found an overall VE against symptomatic SARS-CoV-2 infection due to AY.4.2 of 73% (95% confidence interval (CI) = 62-81) for >14 days post-second vaccine dose. Good protection against AY.4.2 symptomatic infection was observed for BNT162b2, ChAdOx1, and mRNA-1273. In unvaccinated individuals, the hazard ratio (HR) for COVID-19 hospital admission or death from AY.4.2 among community detected cases was 1.77 (95% CI = 1.02-3.07) relative to unvaccinated individuals who were infected with Delta, after adjusting for multiple potential confounders. VE against AY.4.2 COVID-19 admissions or deaths was 87% (95% CI = 74-93) >28 days post-second vaccination relative to unvaccinated.ConclusionsWe found that AY.4.2 was associated with an increased risk of COVID-19 hospitalisations or deaths in unvaccinated individuals compared with Delta and that vaccination provided substantial protection against symptomatic SARS-CoV-2 and severe COVID-19 outcomes following Delta AY.4.2 infection. High levels of vaccine uptake and protection offered by existing vaccines, as well as the rapid emergence of the Omicron variant may have contributed to the AY.4.2 variant never progressing to a variant of concern.