Unknown

Dataset Information

0

Convolutional neural network-based automated segmentation and labeling of the lumbar spine X-ray.


ABSTRACT:

Purpose

This study investigated the segmentation metrics of different segmentation networks trained on 730 manually annotated lateral lumbar spine X-rays to test the generalization ability and robustness which are the basis of clinical decision support algorithms.

Methods

Instance segmentation networks were compared to semantic segmentation networks based on different metrics. The study cohort comprised diseased spines and postoperative images with metallic implants.

Results

However, the pixel accuracies and intersection over union are similarly high for the best performing instance and semantic segmentation models; the observed vertebral recognition rates of the instance segmentation models statistically significantly outperform the semantic models' recognition rates.

Conclusion

The results of the instance segmentation models on lumbar spine X-ray perform superior to semantic segmentation models in the recognition rates even by images of severe diseased spines by allowing the segmentation of overlapping vertebrae, in contrary to the semantic models where such differentiation cannot be performed due to the fused binary mask of the overlapping instances. These models can be incorporated into further clinical decision support pipelines.

SUBMITTER: Konya S 

PROVIDER: S-EPMC8214241 | biostudies-literature | 2021 Apr-Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Convolutional neural network-based automated segmentation and labeling of the lumbar spine X-ray.

Kónya Sándor S   Natarajan Tr Sai TS   Allouch Hassan H   Nahleh Kais Abu KA   Dogheim Omneya Yakout OY   Boehm Heinrich H  

Journal of craniovertebral junction & spine 20210401 2


<h4>Purpose</h4>This study investigated the segmentation metrics of different segmentation networks trained on 730 manually annotated lateral lumbar spine X-rays to test the generalization ability and robustness which are the basis of clinical decision support algorithms.<h4>Methods</h4>Instance segmentation networks were compared to semantic segmentation networks based on different metrics. The study cohort comprised diseased spines and postoperative images with metallic implants.<h4>Results</h  ...[more]

Similar Datasets

| S-EPMC5983385 | biostudies-literature
| S-EPMC7724817 | biostudies-literature
| S-EPMC7442241 | biostudies-literature
| S-EPMC9626964 | biostudies-literature
| S-EPMC10017618 | biostudies-literature
| S-EPMC5955504 | biostudies-literature
| S-EPMC8263843 | biostudies-literature
| S-EPMC11000587 | biostudies-literature
| S-EPMC7314107 | biostudies-literature
| S-EPMC8866960 | biostudies-literature