Unknown

Dataset Information

0

Fetal Zone Steroids and Estrogen Show Sex Specific Effects on Oligodendrocyte Precursor Cells in Response to Oxidative Damage.


ABSTRACT: Oxygen causes white matter damage in preterm infants and male sex is a major risk factor for poor neurological outcome, which speculates the role of steroid hormones in sex-based differences. Preterm birth is accompanied by a drop in 17β-estradiol (E2) and progesterone along with increased levels of fetal zone steroids (FZS). We performed a sex-based analysis on the FZS concentration differences in urine samples collected from preterm and term infants. We show that, in preterm urine samples, the total concentration of FZS, and in particular the 16α-OH-DHEA concentration, is significantly higher in ill female infants as compared to males. Since we previously identified Nup133 as a novel target protein affected by hyperoxia, here we studied the effect of FZS, allopregnanolone (Allo) and E2 on differentiation and Nup133 signaling using mouse-derived primary oligodendrocyte progenitor cells (OPCs). We show that the steroids could reverse the effect of hyperoxia-mediated downregulation of Nup133 in cultured male OPCs. The addition of FZS and E2 protected cells from oxidative stress. However, E2, in presence of 16α-OH-DHEA, showed a negative effect on male cells. These results assert the importance of sex-based differences and their potential implications in preterm stress response.

SUBMITTER: Sunny DE 

PROVIDER: S-EPMC8234485 | biostudies-literature | 2021 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fetal Zone Steroids and Estrogen Show Sex Specific Effects on Oligodendrocyte Precursor Cells in Response to Oxidative Damage.

Sunny Donna Elizabeth DE   Hammer Elke E   Ittermann Till T   Krüger Elisabeth Luise EL   Hübner Stephanie S   Hartmann Michaela Friederike MF   Wudy Stefan Alexander SA   Völker Uwe U   Heckmann Matthias M  

International journal of molecular sciences 20210619 12


Oxygen causes white matter damage in preterm infants and male sex is a major risk factor for poor neurological outcome, which speculates the role of steroid hormones in sex-based differences. Preterm birth is accompanied by a drop in 17β-estradiol (E2) and progesterone along with increased levels of fetal zone steroids (FZS). We performed a sex-based analysis on the FZS concentration differences in urine samples collected from preterm and term infants. We show that, in preterm urine samples, the  ...[more]

Similar Datasets

| S-EPMC9110221 | biostudies-literature
| S-EPMC8943302 | biostudies-literature
| S-EPMC8195802 | biostudies-literature
| S-EPMC10022003 | biostudies-literature
| S-EPMC4560422 | biostudies-literature
| S-EPMC4429067 | biostudies-literature
| S-EPMC2807671 | biostudies-literature
| S-EPMC11782495 | biostudies-literature
| S-EPMC3318005 | biostudies-literature
2023-03-22 | GSE216946 | GEO