Unknown

Dataset Information

0

Efficient long-range conduction in cable bacteria through nickel protein wires.


ABSTRACT: Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.

SUBMITTER: Boschker HTS 

PROVIDER: S-EPMC8238962 | biostudies-literature | 2021 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efficient long-range conduction in cable bacteria through nickel protein wires.

Boschker Henricus T S HTS   Cook Perran L M PLM   Polerecky Lubos L   Eachambadi Raghavendran Thiruvallur RT   Lozano Helena H   Hidalgo-Martinez Silvia S   Khalenkow Dmitry D   Spampinato Valentina V   Claes Nathalie N   Kundu Paromita P   Wang Da D   Bals Sara S   Sand Karina K KK   Cavezza Francesca F   Hauffman Tom T   Bjerg Jesper Tataru JT   Skirtach Andre G AG   Kochan Kamila K   McKee Merrilyn M   Wood Bayden B   Bedolla Diana D   Gianoncelli Alessandra A   Geerlings Nicole M J NMJ   Van Gerven Nani N   Remaut Han H   Geelhoed Jeanine S JS   Millan-Solsona Ruben R   Fumagalli Laura L   Nielsen Lars Peter LP   Franquet Alexis A   Manca Jean V JV   Gomila Gabriel G   Meysman Filip J R FJR  

Nature communications 20210628 1


Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filame  ...[more]

Similar Datasets

| S-EPMC11603878 | biostudies-literature
| S-EPMC11247825 | biostudies-literature
| S-SCDT-10_1038-S44319-025-00387-8 | biostudies-other
| S-BSST1751 | biostudies-other
| S-EPMC8152808 | biostudies-literature
| S-EPMC10959288 | biostudies-literature
| S-EPMC5984516 | biostudies-literature
| S-EPMC11361709 | biostudies-literature
| S-EPMC9589895 | biostudies-literature
| S-EPMC4939269 | biostudies-literature